高二數(shù)學(xué)教案精選范文分享_第1頁
高二數(shù)學(xué)教案精選范文分享_第2頁
高二數(shù)學(xué)教案精選范文分享_第3頁
高二數(shù)學(xué)教案精選范文分享_第4頁
高二數(shù)學(xué)教案精選范文分享_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余24頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高二數(shù)學(xué)教案精選范文分享 高二數(shù)學(xué)教案篇1曲線和方程教學(xué)目標(biāo)(1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題.(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念.(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn).(4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法.(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法.教學(xué)建議教材分析(1)知識(shí)結(jié)構(gòu)曲線與方程是在初中軌跡概念和*直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解

2、析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.(2)重點(diǎn)、難點(diǎn)分析本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想.本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法.教法建議(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對(duì)應(yīng)關(guān)系

3、,說明曲線與方程的對(duì)應(yīng)關(guān)系.曲線與方程對(duì)應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系.注意強(qiáng)調(diào)曲線方程的完備性和純粹性.(2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識(shí)幫助學(xué)生領(lǐng)會(huì)坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備.(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則.(4)從集合與對(duì)應(yīng)的觀點(diǎn)可以看得更清楚:設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;表示二元方程的解對(duì)應(yīng)的點(diǎn)的坐標(biāo)的集合.可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即(5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)

4、學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個(gè)過渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個(gè)過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做.同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得.教學(xué)中對(duì)課本例2的解法分析很重要.這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即文字語言中的幾何條件 數(shù)學(xué)符號(hào)語言中的等式 數(shù)學(xué)符號(hào)語言中含動(dòng)點(diǎn)坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標(biāo)的代數(shù)方程.”(6)求曲線方程的問題是解析幾何中一個(gè)

5、基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”.高二數(shù)學(xué)教案篇2如何在高二這一關(guān)鍵性的一年中與這些同學(xué)一齊共同進(jìn)步縮小差距,我選取了從課堂教學(xué)、作業(yè)布置、評(píng)價(jià)方式這三個(gè)方面入手,激發(fā)學(xué)生的學(xué)習(xí)用心性,盡量向?qū)W生帶給從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫忙他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^程中真正理解和掌握基礎(chǔ)的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。第一,用多變的課堂教學(xué),充分調(diào)動(dòng)學(xué)生的主動(dòng)性我認(rèn)為數(shù)學(xué)教學(xué)是教師思維與學(xué)生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數(shù)學(xué)信息的理解、加工、傳遞的動(dòng)態(tài)過程,在這個(gè)過程中充滿了師生之間的數(shù)學(xué)交

6、流和信息的轉(zhuǎn)換,離開了學(xué)生的參與,整個(gè)過程就難以暢通。北京師范大學(xué)曹才翰教授指出“數(shù)學(xué)學(xué)習(xí)是再創(chuàng)造再發(fā)現(xiàn)的過程,務(wù)必要主體的用心參與才能實(shí)現(xiàn)這個(gè)過程”;從當(dāng)前全面實(shí)施素質(zhì)教育的要求來看,激發(fā)學(xué)生用心參與課堂教學(xué),就是為了提高課堂教學(xué)效率,培養(yǎng)學(xué)生的學(xué)習(xí)潛力和創(chuàng)造思維潛力,這與以培養(yǎng)創(chuàng)造型人才為目的的素質(zhì)教育完全一致,因此,在數(shù)學(xué)課堂教學(xué)中提高學(xué)生的參與度,不僅僅具有提高數(shù)學(xué)教學(xué)質(zhì)量的近期作用,而且具有提高學(xué)生素質(zhì)的遠(yuǎn)期功效。若要實(shí)現(xiàn)這個(gè)目標(biāo),在教學(xué)引入時(shí)我常常以問題作為出發(fā)點(diǎn),選取的素材密切聯(lián)系學(xué)生的現(xiàn)實(shí)生活,運(yùn)用學(xué)生的求知欲,使學(xué)生感到數(shù)學(xué)就在他們身邊,與現(xiàn)實(shí)世界聯(lián)系緊密,同時(shí)問題情景的設(shè)置

7、又具有必須的挑戰(zhàn)性,引發(fā)了學(xué)生的思考。如人教版初二幾何三角形的關(guān)于三角形的一些概念在引入時(shí)我提出了以下幾個(gè)問題:你能舉出生活中一些有關(guān)三角形的實(shí)例嗎?你能一筆畫一個(gè)三角形嗎?你能用語言敘述你的畫圖過程嗎?如人教版初二幾何三角形的三角形全等的判定(一)在引入時(shí)我提出了這樣一個(gè)問題:請(qǐng)你任意畫一個(gè)三角形,你能否再畫一個(gè)與其全等的三角形。畫好后請(qǐng)你剪下來驗(yàn)證一下。學(xué)生的用心性被激發(fā),熱烈的討論,課堂上出現(xiàn)了許多狀況有的學(xué)生用的是先確定一角再確定兩邊的畫法;有的一個(gè)學(xué)生是利用尺規(guī)根據(jù)三邊關(guān)系畫的(這正是后面所要學(xué)的一個(gè)三角形全等的判定公理);有的學(xué)生是利用了垂直、平行、對(duì)頂角來省去作圖中使用量角器的麻

8、煩,學(xué)生充分利用已有的數(shù)學(xué)知識(shí),利用自己對(duì)數(shù)學(xué)圖形的感知,很好的解決了這個(gè)問題,透過剪一剪試一試從直觀上驗(yàn)證了自己的畫法。如相似形的相似三角形的性質(zhì)在引入時(shí)我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會(huì)想到什么?學(xué)生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測(cè)量出埃及大金字塔的高度嗎?學(xué)生幾乎是異口同聲地告訴我用影長,當(dāng)時(shí)我稱贊他們與我們的幾何學(xué)之父古希臘人歐幾里得的測(cè)量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時(shí)候,測(cè)量了金字塔的塔影的長度,這時(shí),他宣布,“這就是大金字塔的高度?!睆亩ぐl(fā)了學(xué)生探索相似三角形的其它性質(zhì)的興趣。我在課堂

9、教學(xué)的過程中,為了使成績較差同學(xué)減少對(duì)于數(shù)學(xué)的恐懼感,課堂上放慢教學(xué)速度,變換教學(xué)方法,如人教版初二幾何三角形的關(guān)于三角形的一些概念我是這樣處理的:1、請(qǐng)學(xué)生講解三角形的有關(guān)概念;2、請(qǐng)學(xué)生用折紙的方法講解角平分線和中線,折紙的過程中你還發(fā)現(xiàn)了什么?3、請(qǐng)學(xué)生任意作一個(gè)三角形,并做出這個(gè)三角形的一條角平分線和一條中線。三個(gè)要求層層深入了學(xué)生對(duì)于基本概念的理解,變教師講為學(xué)生講,取得了較好的效果。我在課堂上放慢教學(xué)速度是能夠照顧到大部分學(xué)生的,但一小批優(yōu)等生就會(huì)出現(xiàn)沒事做的狀況,這時(shí)學(xué)習(xí)小組就是他們發(fā)揮余熱的地方,在具體的教學(xué)過程中給學(xué)生建立了數(shù)學(xué)學(xué)習(xí)小組,讓學(xué)生在各自的小組中相互幫忙,讓每一個(gè)

10、學(xué)生都能從事小組中不同的工作,并最終完成一個(gè)共同的目標(biāo)。透過小組學(xué)習(xí),使學(xué)生樹立正確的團(tuán)隊(duì)觀,尊重他人、尊重自己,敢于發(fā)表自己的觀點(diǎn),又不固執(zhí)己見,對(duì)同學(xué)的見解,既要樂于理解合理成分,又要勇于表達(dá)自己不同的看法。在具體實(shí)施的過程中,我越發(fā)的認(rèn)識(shí)到討論的重要性,我鼓勵(lì)學(xué)生質(zhì)疑,質(zhì)疑教師,質(zhì)疑教科書,鼓勵(lì)學(xué)生爭論,有些知識(shí)點(diǎn)在學(xué)生的爭論中被突破,知識(shí)在爭論中被融會(huì)貫通,我發(fā)現(xiàn)學(xué)生之間的語言他們更容易理解,于是我開始嘗試讓學(xué)生講課,講過三角形的分類等。又如學(xué)習(xí)基本作圖時(shí),教科書就如一本說明書,讓學(xué)生以學(xué)習(xí)小組為單位,閱讀、畫圖,互教互學(xué),實(shí)際教學(xué)時(shí)取得了很好的效果。讓各層次的學(xué)生都能有所知,有所得。

11、在認(rèn)知效果和記憶效果方面比教師直接給出要好。第二,布置多樣的作業(yè),引導(dǎo)學(xué)生的用心性讓學(xué)生作業(yè)的目的在于鞏固和消化所學(xué)的知識(shí),并使知識(shí)轉(zhuǎn)化為技能技巧。正確組織好學(xué)生作業(yè),對(duì)于培養(yǎng)學(xué)生的獨(dú)立學(xué)習(xí)的潛力和習(xí)慣,發(fā)展學(xué)生的智力和創(chuàng)造潛力有著重大好處。因此,教師應(yīng)重視作業(yè)的布置,數(shù)學(xué)課程標(biāo)準(zhǔn)中明確指出:“義務(wù)教育階段的數(shù)學(xué)課程應(yīng)突出體現(xiàn)基礎(chǔ)性、普及性和發(fā)展性,使數(shù)學(xué)教育面向全體學(xué)生,實(shí)現(xiàn)人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。”作業(yè)布置如何體現(xiàn)這一基本理念,如何調(diào)整作業(yè)在學(xué)生學(xué)習(xí)活動(dòng)中的位置,也是提高課堂教學(xué)效率的關(guān)鍵。課堂結(jié)束新課后,我透過作業(yè)的布置滲透數(shù)學(xué)學(xué)習(xí)方法

12、如自學(xué),這樣才能真正提高學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,開始時(shí)每一天的第一樣作業(yè)是復(fù)習(xí),最后一項(xiàng)作業(yè)是預(yù)習(xí),而且把具體的頁數(shù)寫清楚提出具體的預(yù)習(xí)提綱,加強(qiáng)學(xué)生看書的針對(duì)性,開始時(shí)還帶有必須的強(qiáng)制性如讓家長簽字,從而提高學(xué)生閱讀理解的潛力。對(duì)數(shù)學(xué)的興趣能激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),富有情境的作業(yè)具有必須吸引力,能使學(xué)生充分發(fā)揮自己的智力水平去完成。趣味性要體現(xiàn)出題型多樣,方式新穎,資料有創(chuàng)造性,如課本習(xí)題、自編習(xí)題、計(jì)算類題目、表述類題目(如單元小結(jié)、學(xué)習(xí)體會(huì)、數(shù)學(xué)故事、小論文等)互相穿插,讓學(xué)生感受到作業(yè)資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業(yè)的樂趣。根據(jù)上課資料所需經(jīng)常讓學(xué)生動(dòng)手做教具如剪鈍角

13、三角形、銳角三角形、直角三角形,做教具說明三角形具有穩(wěn)定性而四邊形沒有此特性等,這種做法不但能夠提高學(xué)生學(xué)習(xí)的興趣,而且會(huì)有一些意想不到的事情。如:學(xué)生做教具說明三角形具有穩(wěn)定性而四邊形沒有此特性時(shí),有的學(xué)生用線繩打結(jié)連接四邊,有的學(xué)生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動(dòng)而有的不能,經(jīng)過學(xué)生的討論得出關(guān)鍵在于連接處是一個(gè)點(diǎn)還是兩個(gè)點(diǎn)的問題,學(xué)生很受啟發(fā)。高二數(shù)學(xué)教案篇3一、說教材1.從在教材中的地位與作用來看等比數(shù)列的前n項(xiàng)和是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體

14、變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).2.從學(xué)生認(rèn)知角度看從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò).3.學(xué)情分析教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).4.重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和

15、公式的運(yùn)用.教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).二、說目標(biāo)知識(shí)與技能目標(biāo):理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.過程與方法目標(biāo):通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.情感與態(tài)度價(jià)值觀:通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).三、說過程學(xué)生是

16、認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:1.創(chuàng)設(shè)情境,提出問題在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當(dāng)時(shí)的印度國王大為贊賞,對(duì)他說:我可以滿足你的任何要求.西薩說:請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚.為什么呢?設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)

17、生寫出麥??倲?shù).帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時(shí)間營造知識(shí)形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.2.師生互動(dòng),探究問題在肯定他們的思路后,我接著問:1,

18、2,22,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做*,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:

19、.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.3.類比聯(lián)想,解決問題這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q

20、進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.4.討論交流,延伸拓展高二數(shù)學(xué)教案篇4導(dǎo)數(shù)的幾何意義教學(xué)目標(biāo)知識(shí)與技能目標(biāo):本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:(1) 通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以

21、及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。(2) 從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。(3) 依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對(duì)導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)

22、過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。過程與方法目標(biāo):(1) 學(xué)生通過觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。(2) 學(xué)生通過對(duì)圓的切線和割線聯(lián)系的認(rèn)識(shí),再類比探索一般曲線的情況,完善對(duì)切線的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。(3) 結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。情感、態(tài)度、價(jià)值觀:(1) 通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識(shí)無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;(2) 在教學(xué)中

23、向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。教學(xué)過程一、復(fù)習(xí)提問1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意

24、義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。求導(dǎo)數(shù)的步驟:第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.(即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案 在圖形中表示什么?生:平均變化率表示的是割線pq的斜率.導(dǎo)數(shù)的幾何意義教案師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?如圖2-1,設(shè)曲線c是函數(shù)y=f(x)的圖象,點(diǎn)p(x0,y0)是曲線c上一點(diǎn).點(diǎn)q(x0+x,y0+y)是曲線c上與點(diǎn)p鄰近的任一點(diǎn),作割線pq,當(dāng)點(diǎn)q

25、沿著曲線c無限地趨近于點(diǎn)p,割線pq便無限地趨近于某一極限位置pt,我們就把極限位置上的直線pt,叫做曲線c在點(diǎn)p處的切線.導(dǎo)數(shù)的幾何意義教案追問:怎樣確定曲線c在點(diǎn)p的切線呢?因?yàn)閜是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識(shí),只要求出切線的斜率就夠了.設(shè)割線pq的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線pt的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線pq的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線pq的極限位置上的直線pt是切線,所以割線pq斜率的極限就是切線pt的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案 導(dǎo)數(shù)的幾何意義教案。導(dǎo)數(shù)的幾何意義教案由上式可知:曲線f(x)

26、在點(diǎn)(x0,f(x0)處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。c類學(xué)生回答第1題,a,b類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評(píng)第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.二、新課1、導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0)處切線的斜率.即:導(dǎo)數(shù)的幾何意義教案口答練習(xí):(1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f(x0)=1,f(x0)=1,f(x0)=-1,f(x0)=2.試求函數(shù)圖像在對(duì)應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。(c層學(xué)生做)(2)已知函

27、數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(a、b層學(xué)生做)導(dǎo)數(shù)的幾何意義教案2、如何用導(dǎo)數(shù)研究函數(shù)的增減?小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對(duì)應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢(shì),得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。例1 函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,

28、求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。導(dǎo)數(shù)的幾何意義教案函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0)處的切線方程.例2 求曲線y=x2在點(diǎn)m(2,4)處的切線方程.解:導(dǎo)數(shù)的幾何意義教案y|x=2=22=4.點(diǎn)m(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.由上例可歸納出求切線方程的兩個(gè)步驟:(1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f(x0).(2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為 y-y0=f(x0)(x-x0).提問:若

29、在點(diǎn)(x0,f(x0)處切線pt的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)(先由c類學(xué)生來回答,再由a,b補(bǔ)充.)例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過p點(diǎn)的切線的斜率;(2)過p點(diǎn)的切線的方程。解:(1)導(dǎo)數(shù)的幾何意義教案,導(dǎo)數(shù)的幾何意義教案y|x=2=22=4. 在點(diǎn)p處的切線的斜率等于4.(2)在點(diǎn)p處的切線方程為導(dǎo)數(shù)的幾何意義教案 即 12x-3y-16=0.練習(xí):求拋物線y=x2+2在點(diǎn)m(2,6)處的切線方程.(答案:y=

30、2x,y|x=2=4切線方程為4x-y-2=0).b類學(xué)生做題,a類學(xué)生糾錯(cuò)。三、小結(jié)1.導(dǎo)數(shù)的幾何意義.(c組學(xué)生回答)2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0)處的切線方程的步驟.(b組學(xué)生回答)四、布置作業(yè)1. 求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。2.求拋物線y=4x-x2在點(diǎn)a(4,0)和點(diǎn)b(2,4)處的切線的斜率,切線的方程.3. 求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;(c組學(xué)生完成1,2題;b組學(xué)生完成1,2,3題;a組學(xué)生完

31、成2,3,4題)教學(xué)反思:本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動(dòng)手作圖,自我感受整個(gè)逼近的過程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù) 的幾何意義解釋實(shí)際問題”兩個(gè)教學(xué)重心展開。 先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義“導(dǎo)數(shù)是曲線上

32、某點(diǎn)處切線的斜率”。完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時(shí),某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對(duì)象刻畫復(fù)雜對(duì)象”的目的,并通過兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。 本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。高二數(shù)學(xué)教案篇5直線方程的一般形式教學(xué)目標(biāo):(1)掌握直線方程的一般形式,掌握直線方程幾種

33、形式之間的互化.(2)理解直線與二元一次方程的關(guān)系及其證明(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.教學(xué)用具:計(jì)算機(jī)教學(xué)方法:啟發(fā)引導(dǎo)法,討論法教學(xué)過程:下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:教學(xué)設(shè)計(jì)思路:(一)引入的設(shè)計(jì)前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次.肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范

34、的表述.再看一個(gè)問題:問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次.肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的次數(shù)為一次”.啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:【問題1】“任意直線的方程都是二元一次方程嗎?”(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).經(jīng)過一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論