版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、高三數(shù)學(xué)復(fù)習知識點總結(jié)歸納5篇 與高一高二不同之處在于,高三復(fù)習知識是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。下面就是給大家?guī)淼母呷龜?shù)學(xué)復(fù)習知識點,希望大能幫助到大家! 高三數(shù)學(xué)復(fù)習知識點1第一部分集合(1)含n個元素的集合的子集數(shù)為2n,真子集數(shù)為2n-1;非空真子集的數(shù)為2n-2;(2)注意:討論的時候不要遺忘了的情況。(3)第二部分函數(shù)與導(dǎo)數(shù)1.映射:注意第一個集合中的元素必須有象;一對一,或多對一。2.函數(shù)值域的求法:分析法;配方法;判別式法;利用函數(shù)單調(diào)性;換元法;利用均值不等式;利用數(shù)形結(jié)合或幾何
2、意義(斜率、距離、絕對值的意義等);利用函數(shù)有界性(、等);導(dǎo)數(shù)法3.復(fù)合函數(shù)的有關(guān)問題(1)復(fù)合函數(shù)定義域求法:若f(x)的定義域為a,b,則復(fù)合函數(shù)fg(x)的定義域由不等式ag(x)b解出若fg(x)的定義域為a,b,求f(x)的定義域,相當于xa,b時,求g(x)的值域。(2)復(fù)合函數(shù)單調(diào)性的判定:首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。5.函數(shù)的奇偶性函數(shù)的定義域關(guān)于原點對稱
3、是函數(shù)具有奇偶性的必要條件;是奇函數(shù);是偶函數(shù);奇函數(shù)在原點有定義,則;在關(guān)于原點對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價變形,再判斷其奇偶性;高三數(shù)學(xué)復(fù)習知識點21.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);2.對于函數(shù)f(x),如果對于定義域內(nèi)任意一個x,都有f(-x)=f(x),那么f(x)為偶函數(shù);3.一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(a,b)成中心對稱;4.一般地,對于函數(shù)y=f(x
4、),定義域內(nèi)每一個自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對稱。5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內(nèi)的任意一個x,則-x也一定是定義域內(nèi)的一個自變量(即定義域關(guān)于原點對稱).高三數(shù)學(xué)復(fù)習知識點31.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.2.在應(yīng)用條件時,易a忽略是空集的情況3.你會用補集的思想解決有關(guān)問題嗎?4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?5.你知道“否
5、命題”與“命題的否定形式”的區(qū)別.6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.9.原函數(shù)在區(qū)間-a,a上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導(dǎo)數(shù)法11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?比較函數(shù)值的大
6、小;解抽象函數(shù)不等式;求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.19.絕對值不等式的解法及其幾何
7、意義是什么?20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是”.22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即ab0,a0.24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。2
8、6.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?31.在解
9、三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是34.你還記得某些特殊角的三角函數(shù)值嗎?35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:(1)函數(shù)的圖象的平移為“左+右-,上+下
10、-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.(3)點的平移公式:點p(x,y)按向量平移到點p(x,y),則x=x+hy=y+k.37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)38.形如的周期都是,但的周期為。39.正弦定理時易忘比值還等于2r。高三數(shù)學(xué)復(fù)習知識點41、三類角的求法:找出或作出有關(guān)的角。證明其符合定義,并指出所求作的角
11、。計算大小(解直角三角形,或用余弦定理)。2、正棱柱底面為正多邊形的直棱柱正棱錐底面是正多邊形,頂點在底面的射影是底面的中心。正棱錐的計算集中在四個直角三角形中:3、怎樣判斷直線l與圓c的位置關(guān)系?圓心到直線的距離與圓的半徑比較。直線與圓相交時,注意利用圓的“垂徑定理”。4、對線性規(guī)劃問題:作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的最值。不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?(1)欣賞數(shù)學(xué)的美感比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密通過對旋轉(zhuǎn)變換及其不變量的討論,我
12、們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。(2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.(3)采用靈活的教學(xué)手段,與時俱進。利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。(4)適當看一些科普類的書籍和*。比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多*對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)
13、用,這方面的*也不少。高三數(shù)學(xué)復(fù)習知識點5課后一分鐘回憶及時復(fù)習數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習的重中之重。回歸課本,先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確?;靖拍?、公式等牢固掌握,要扎扎實實,不要盲目攀高,以免欲速則不達。復(fù)習課的容量大、內(nèi)容多、時間緊。要提高復(fù)習效率,必須使自己的思維與老師的思維同步。而預(yù)習則是達到這一目的的重要途徑。沒有預(yù)習,聽老師講課,就抓不住老師講的重點;而預(yù)習了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點放在自己還未掌握的內(nèi)容上,從而提高復(fù)習效率。同時預(yù)習還有利于培養(yǎng)自己的自
14、學(xué)能力。上完課的當天,必須做好當天的復(fù)習。復(fù)習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習:先把書,筆記合起來回憶上課老師講的內(nèi)容,例題;分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,趕緊補完,這樣不僅能把當天上課內(nèi)容鞏固下來,而且也能檢查當天課堂聽課的效果如何,同時也可改進聽課方法及提高聽課效果。我們可以簡記為“一分鐘的回憶法”。避免“會而不對”的錯誤習慣解題時應(yīng)仔細閱讀題目,看清數(shù)字,規(guī)范解題格式,養(yǎng)成良好解題習慣。部分同學(xué)(尤其是腦子比較好的同學(xué))自我感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規(guī)范。
15、但在正規(guī)考試中即使答案對了,由于過程不完整而扣分較多。還有一部分同學(xué)平時學(xué)習過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正。這些同學(xué)到了考場上常會出現(xiàn)心理性錯誤,導(dǎo)致“會而不對”,或是為了保證正確率,反復(fù)驗算,費時費力,影響整體得分。這些問題很難在短時間得以解決,必須在平時養(yǎng)成良好解題習慣?!皶粚Α笔歉呷龜?shù)學(xué)學(xué)習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學(xué)習習慣,必須在第一輪復(fù)習中逐步克服,否則,后患無窮??山Y(jié)合平時解題中存在的具體問題,逐題找出原因,看其到底是行為習慣方面的原因,還是知識方面的缺陷,再有針對性地加以解決。必要時要
16、作些記錄,也就是“錯題筆記”。每過一段時間,就把“錯題筆記”或標記錯題的試卷復(fù)習一遍。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側(cè)重。重視“一題多解”“多題同解”學(xué)好數(shù)學(xué)要做大量的習題,但做了大量的題,數(shù)學(xué)都未必好,為何會出現(xiàn)這種反差呢?究其原因,是片面追求做題數(shù)量,而沒有發(fā)揮做題的效果。進入復(fù)習階段后,大量的試題鋪天蓋地而來,這時我們一定要保持清醒的頭腦,要有所為,有所不為。學(xué)習數(shù)學(xué)不做題肯定不對,但不能陷入題海不能自拔,要充分發(fā)揮教材在知識形成過程中的作用,注意典型例題的示范價值,能夠舉一反三,重視“一題多解”和“多題同解”,做到以一題帶一片。要有針對性地
17、做題,典型的題型,應(yīng)該規(guī)范完成,同時還應(yīng)了解自己,有選擇地做一些課外的題;要循序漸進,由易到難,對做過的典型題型有一定的體會和變通,即按“學(xué)、練、思、結(jié)”程序?qū)Υ湫偷膯栴},這樣做才能起到事半功倍的效果。另外,獨立思考是數(shù)學(xué)的靈魂,遇到不懂或困難的問題時,要堅持獨立思考,不要一遇到不會的習題就馬上去問別人,自己不動腦子,而應(yīng)該要自己先認真地思考一下,盡量依靠自己的努力克服其中的困難。如經(jīng)過努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。應(yīng)學(xué)會提出問題,提出問題往往比解決問題更難,而且也更重要。弄清自己錯在哪里每次試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn),尤其是將試卷中出現(xiàn)的錯
18、誤進行分類,可如下分類:第一類問題遺憾之錯。就是分明會做,反而做錯了的題。比如說,“審題之錯”是由于審題出現(xiàn)失誤,看錯數(shù)字等造成的;“計算之錯”是由于計算出現(xiàn)差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如角的單位混用等。出現(xiàn)這類問題是最后悔的事情。要消除遺憾必須弄清遺憾的原因,然后找出解決問題的辦法,如“審題之錯”,是否出在急于求成?可采取“一慢一快”戰(zhàn)術(shù),即審題要慢、答題要快?!坝嬎沐e誤”,是否由于草稿紙用得太亂等。建議將草稿紙對折分塊,每一塊上演算一道題,有序排列便于回頭查找。“抄寫之錯”,可以用檢查程序予以解決?!氨磉_之錯”,注意表達的規(guī)范性,平時作業(yè)就嚴格按照規(guī)范書寫表達,學(xué)習高考評分標準寫出必要的步驟,并嚴格按著題目要求規(guī)范回答問題。第二類問題似非之錯。記憶不準確,理解不透徹,應(yīng)用不自
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 師德先進學(xué)校事跡材料7篇
- 北京市海淀區(qū)2024?2025學(xué)年高二上學(xué)期10月階段考試數(shù)學(xué)試題含答案
- 《教育心理學(xué)》讀后感6篇
- 湖北省鄂州市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版摸底考試(下學(xué)期)試卷及答案
- 2024年導(dǎo)線剝皮機項目資金需求報告代可行性研究報告
- 2023年輔助功能檢測系統(tǒng)資金籌措計劃書
- 市政道路路基土方、石方施工規(guī)范編制說明
- 七年級歷史上冊教案集
- 文化產(chǎn)業(yè)示范園區(qū)及示范基地創(chuàng)建管理工作辦法
- 貴州省貴陽市部分校聯(lián)盟2024-2025學(xué)年八年級上學(xué)期期中聯(lián)考物理試題(無答案)
- 銷售到營銷的轉(zhuǎn)變
- 2024年高考生物一輪復(fù)習特異性免疫課件
- 無人機現(xiàn)場服務(wù)方案
- 骨質(zhì)疏松患者的護理干預(yù)與教育
- 述職報告 設(shè)備主管述職報告
- 衛(wèi)生院健康扶貧工作實施方案
- 西部地區(qū)中等職業(yè)教育發(fā)展的現(xiàn)狀與對策-以麻江縣為例的中期報告
- 中職幼兒保育職業(yè)生涯規(guī)劃書
- 膠質(zhì)瘤發(fā)病機制
- 好看的皮囊千篇一律有趣的靈魂萬里挑一
- 某房地產(chǎn)公司項目定位分析
評論
0/150
提交評論