用基底表示向量練習(xí)題_第1頁
用基底表示向量練習(xí)題_第2頁
用基底表示向量練習(xí)題_第3頁
用基底表示向量練習(xí)題_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、平面向量練習(xí)題 設(shè)AABC中BC邊上的中線為AD, 點(diǎn) 0滿足 AO = -2DO 則OC=() A. -AB + -ACB. AB-AC C. -AB-AC 333333 2一 1 一 DAB + -AC 33 2.設(shè)AABC中BC邊上的中線為AD,點(diǎn)。滿足AO = 2OD 則OC=() 1 -AB-AC 33 B. -AB-AC 33 2一 1 D. AB + AC 33 3.在正方形ABCD中,設(shè)殛=刁,AD = b 已知E, F , G分別是AB , DE, CF的中點(diǎn),則而=() 4.在 A4BC 中, 4 D. -a + -b 84 AD = 2DBf若P為CD上一點(diǎn),且滿足AP

2、= niAC 則 m =() 5.已知 AABC 中.AD = DB,AE = 2EC 若 CD, BE 相交于點(diǎn) P,則 CP = () A.浮+抨良泮一抨 c. -AB+-AC 24 D. -AB-AC 24 6.在AABC中,若點(diǎn)D滿足而=3DB9點(diǎn)M為線段AC中點(diǎn),則mD=() 2 2 44 12.在等腰梯形 ABCD 中,AB/DC, AB = 2DC9 如 = 60, E 為 BC 的 中點(diǎn),則() A. AE = -AB + -AD 42 EF交AC于比設(shè)lB = a,AC = b9則麗 等于( 33 14. 在厶ABC9 點(diǎn) D E分別在邊 AB, BC,且BE=2EC記 AB

3、 = a,AC = b,若 DE = xa + yb 貝| x + y 的值為. -2i 15. 如圖所示,在 o ABCDAB = a, AD = b,BM=- BC. AN = -AB. (1) 試用向量方力來表示麗麗; (2) 仙交2W于。點(diǎn),求AO: 0M的值. 16. 如圖,平行四邊形磁P的對(duì)角線勿交于Q點(diǎn),線段QD上有點(diǎn)M滿足 萬5 = 3而,線段e上有點(diǎn)N滿足OC = AON (A 0), i:AB = a,AD = bt已知 MN = lia-b9試求實(shí)數(shù)入“的值. 17. 如圖所示,在中,OA = a.OB = b9點(diǎn)是肋上靠近萬的一個(gè)三等分 點(diǎn),點(diǎn)N是少上靠近川的一個(gè)四等分點(diǎn).若防與則相交于點(diǎn)A求麗. 18. 如圖,點(diǎn)C是點(diǎn)萬關(guān)于點(diǎn)A的對(duì)稱點(diǎn),點(diǎn)Q是線段OB的一個(gè)靠近點(diǎn)方的三等分 點(diǎn)fTAB = a9Ad =

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論