外文翻譯伺服系統(tǒng)_第1頁
外文翻譯伺服系統(tǒng)_第2頁
外文翻譯伺服系統(tǒng)_第3頁
外文翻譯伺服系統(tǒng)_第4頁
外文翻譯伺服系統(tǒng)_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、 南京大學(xué)畢業(yè)設(shè)計(論文)外文資料翻譯系部: 機(jī)械系 專 業(yè): 機(jī)械工程及自動化 姓 名: 學(xué) 號: 外文出處: servo systems 附 件: 1.外文資料翻譯譯文;2.外文原文。 指導(dǎo)教師評語:該同學(xué)翻譯的外文資料原稿,緊扣本次畢業(yè)設(shè)計主題。中文翻譯稿語言通順,與原文表達(dá)的意思基本相符,基本符合畢業(yè)設(shè)計的要求,基本達(dá)到了預(yù)期的目的。 成績評定為中。 簽名: 年 月 日注:請將該封面與附件裝訂成冊。附件1:外文資料翻譯譯文伺服系統(tǒng)由輸入軸隨意運動引起輸出軸運動的一種形式是同步發(fā)送接收系統(tǒng)。另一種形式是伺服機(jī)構(gòu)或伺服系統(tǒng)同步系統(tǒng)可在相當(dāng)大的距離內(nèi)在兩個分開的軸之間工作,但不提供力矩放大傳

2、送到負(fù)載的力矩不能超過輸入力矩。由于這個原因,并且在傳送大力矩時,偏差角增大,同步系統(tǒng)只能用丁轉(zhuǎn)動刻度盤和指針,移動控制活門和驅(qū)動其他小力矩負(fù)載。另一方面,伺服系統(tǒng)可提供要求移動大負(fù)載的大力矩,只需給輸入軸加上很小的力矩。遙控運行不是伺服系統(tǒng)的固有特性,但可以通過數(shù)據(jù)傳送裝置實現(xiàn),通常同步器作為系統(tǒng)的一部分。 一、伺服系統(tǒng)的基本要求 伺服系統(tǒng)是一種具有響應(yīng)和執(zhí)行指令的裝置,伺服系統(tǒng)必須能夠滿足五項基本要求,它們是: a.伺服系統(tǒng)要能夠接收規(guī)定期望結(jié)果的指令。 b伺服系統(tǒng)要能夠估計存在條件。 c伺服系統(tǒng)要能夠把存在條件與期望結(jié)果相比較得出差值或偏差信號。 d伺服系統(tǒng)要能夠依據(jù)偏差信號,發(fā)出校正指

3、令,正確地改變存在條件到期望結(jié)果。 e伺服系統(tǒng)要有執(zhí)行校正指令的方法。 為使伺服系統(tǒng)滿足五項基本要求,它必須具有一個偏差檢測元件和一個操縱負(fù)載位移馬達(dá)的控制器。 二、伺服系統(tǒng)部件 伺服系統(tǒng)包括偏差指示器和按照圖1方式連接輸入和輸出軸的控制器。伺服系統(tǒng)的目標(biāo)是驅(qū)功輸出軸通過保持偏差角(輸出軸離輸入軸的角位移偏差)盡可能接近于零而重復(fù)輸入軸運動。偏差指示器確定了偏差角的幅值和方向。在偏差指示器信號控制下,控制器在減小偏差的方向上給輸出軸施加力矩。伺服系統(tǒng)是個閉環(huán)或稱作反饋系統(tǒng),因為加到控制器的信號引起輸出軸轉(zhuǎn)動,改變了偏差角,這樣又改變了加到控制器的信號。圖1偏差指示器和控制器可以采用很多種形式。

4、控制器必須含有伺服馬達(dá)或一些產(chǎn)生輸出為矩的裝量。伺服系統(tǒng)可按照所用伺服馬達(dá)的類型劃分為電動式、液壓式、氣動式或機(jī)械式。本文只討論電動伺服系統(tǒng)。電動伺服系統(tǒng)使用多種電動馬達(dá)。除了伺服馬達(dá)外,控制器一般還包括功率放大器,能使來自偏差指示器的弱信號轉(zhuǎn)換為較大功率供給馬達(dá)。這種功率放大器通常稱作伺服放大器。偏差指示器最常見的是同步裝量。電動伺服系統(tǒng)中,同步發(fā)電機(jī)和控制變換器機(jī)械聯(lián)接到輸入和輸出軸上,控制變換器即偏差指示器,其轉(zhuǎn)子電壓用作控制器的輸入信號。圖2大部分航空電子應(yīng)用中的伺服系統(tǒng)是帶控制變換器偏差指示器的電動伺服系統(tǒng)。這種伺服系統(tǒng)的框圖如圖2所示。若這個系統(tǒng)用直流馬達(dá),圖中放大器必須具有將同步

5、系統(tǒng)的交流電壓整流,同時進(jìn)行功率放大的功能,若使用交流馬達(dá),則需要交流放大器圖2所示的系統(tǒng)中,輸入軸與輸出軸之間的偏差角,確定了由控制變換器產(chǎn)生并送到伺服放大器的偏差電壓的相位和幅值。偏差信號依次控制由伺服馬達(dá)加到輸出軸上力矩的方向和幅值。電動伺服系統(tǒng)使用很多類型的伺服馬達(dá),而在航空電子應(yīng)用中,兩相感應(yīng)電機(jī)是應(yīng)用最廣的。因而本文只討論兩相感應(yīng)伺服馬達(dá)。三、平衡電位計型偏差指示器伺服系統(tǒng)中作偏差指示器的另一種裝置是平衡電位計(見圖3)本系統(tǒng)中有兩個電位計用在電橋中,一個電位計用于指令控制,另一個電位計機(jī)械藕合在伺服機(jī)械的輸出軸上。兩個裝置的差值將產(chǎn)生偏差信號。依次引起伺服放大器或控制器轉(zhuǎn)動輸出軸

6、,直到電橋平衡為止。平衡電位計產(chǎn)生的偏差信號與控制變換器產(chǎn)生的偏差電壓完全是用于同樣方式。圖3ct(控制變換器)的指令一般來自離ct一段距離的同步發(fā)送器轉(zhuǎn)軸的運動,而平衡電位計轉(zhuǎn)軸指令則可加到一個電位計滑動觸點的轉(zhuǎn)子上。這種系統(tǒng)的實例正如arn-21塔康收發(fā)機(jī)的頻道選擇器。平衡電位計的輸入部分位于頻道選擇器的控制端,電位計的另一部分位于收發(fā)器組件。電位計的滑動觸點機(jī)械聯(lián)接到晶體狀六角轉(zhuǎn)塔上。四、兩相感應(yīng)電動機(jī) 經(jīng)常用于驅(qū)動伺服機(jī)構(gòu)輸出軸的各類交流馬達(dá)中,最重要的是兩相感應(yīng)電動機(jī)。這種電機(jī)在小容量伺服系統(tǒng)中有著廣泛的應(yīng)用,例如用于機(jī)載塔康的距離和方位指示器驅(qū)動系統(tǒng)和用于驅(qū)動雷達(dá)平面位量指示器的偏

7、轉(zhuǎn)線圈,還用于大多數(shù)航空電于設(shè)備上。為了了解采用感應(yīng)電動機(jī)的伺服機(jī)構(gòu),首先要知道這些電機(jī)的特性。圖4圖4給出了表示雙極、雙相感應(yīng)電動機(jī)的轉(zhuǎn)于、剖面和電路圖。定于和轉(zhuǎn)子都是由薄鋼片疊加構(gòu)成的。定子有兩個相同的線圈:a線圈和b線圈。如此排列可使兩個線圈的磁場相互垂直轉(zhuǎn)子可采用線繞式短路繞組或鼠籠式繞組。鼠籠繞組由轉(zhuǎn)于槽內(nèi)的導(dǎo)電條組成。這些導(dǎo)電條由轉(zhuǎn)子兩端的導(dǎo)電環(huán)短接。定子線圈通常供給幅值相等、相位相差90度的交流電,這種交流電可直接從兩相電源系統(tǒng)得到,或從單相電源利用移相電路的方式獲得如圖4 (d)所示。正如圖4 (e)的相量圖所示,b線圈電流ib因線圈的感抗而滯后于外加電壓e.a線圈電流ia因電

8、容c的容抗大于a線圈的感抗而使電流超前于外加電壓e。適當(dāng)選擇電容值的大小,可改變ia相對e的相位,使la和ib的相位差接近90度。由于電流流過兩個線圈,通過轉(zhuǎn)子鐵芯的總磁通的幅值是常量,并由定子電流的頻率確定磁場沿電動機(jī)軸轉(zhuǎn)動的速度。圖5表明了旋轉(zhuǎn)磁場是如何產(chǎn)生的。圖中標(biāo)明了在電流的一個周期內(nèi)各段區(qū)間磁通的方向。圖中頂行描述了一個電流周期內(nèi)每隔90度時,定子合成磁場的狀態(tài)。圖5圖中所示的任何時刻的瞬時磁通,是流過兩個線圈電流產(chǎn)生的合成磁通。相位角為零度時僅a線圈有電流,磁通方向沿a線圈軸線內(nèi)上。90度時,僅b線圈有電流,磁通方向向右。18度時,由于a線圈電流在負(fù)值方向上,所以磁通方向向下。頂行

9、圖示說明了供電電流每個周期內(nèi),磁通旋轉(zhuǎn)一周的變化。圖5中第二行給出了兩個線圈都有電流時,相位角為中間值的磁通狀態(tài)。由于定子線圈的每匝都分布在槽內(nèi),這種方式使氣隙磁通密度隨轉(zhuǎn)子的角度呈正弦規(guī)律變化,磁通在整個旋轉(zhuǎn)過程中保持恒定幅值。例如。在45度相位角,流過a線圈的電流幅值是最大值的0.707倍這個電流產(chǎn)生向上的磁通也是最大值的0.707倍。b線圈也流過幅值為最大值0.707倍的電流,產(chǎn)生最大值的0.707倍的向右的磁通。兩個成直角的磁通線圈,其合成相量轉(zhuǎn)到45度方向,幅值等于每個單個線圈的最大幅值。 旋轉(zhuǎn)磁通的速度叫做同步轉(zhuǎn)速,它由線圈電流的頻率決定。對于工作在400周秒電源的雙極電動機(jī)來說,

10、其同步轉(zhuǎn)速為2400轉(zhuǎn)分。 兩相感應(yīng)電機(jī)中,若把任何一個定子線圈的接線端子互換,則旋轉(zhuǎn)磁通的方向?qū)⒎聪?。換句話說,每個定子電流移相18度時,將使電動機(jī)反轉(zhuǎn)。當(dāng)a線圈電流ia極性反向時,磁通的旋轉(zhuǎn)方向也由順時針變?yōu)榉磿r針。 旋轉(zhuǎn)磁通穿過轉(zhuǎn)子導(dǎo)體。在轉(zhuǎn)子導(dǎo)體中產(chǎn)生電勢,因此有電流流過轉(zhuǎn)子短路繞組,圖6表示磁通旋轉(zhuǎn)的某一瞬間,轉(zhuǎn)子電流的方向可用圓點和叉號表示。(圖中假定轉(zhuǎn)子轉(zhuǎn)速近似等于同步轉(zhuǎn)速,且轉(zhuǎn)子電流與轉(zhuǎn)子感應(yīng)電勢同相)字母n和s代表定子旋轉(zhuǎn)磁場的北極和南極。n和s代表轉(zhuǎn)子電流產(chǎn)生的轉(zhuǎn)子磁場北極和南級。因此轉(zhuǎn)子成為一個磁體,試圖朝定子磁場方向調(diào)節(jié)自己,由此產(chǎn)生轉(zhuǎn)矩,方向是使轉(zhuǎn)子沿定子旋轉(zhuǎn)磁場方向

11、轉(zhuǎn)動。附件2:外文原文(復(fù)印件)servo systemsone means of causing an output shaft to follow the arbitrary motion of an input shaft is the synchro transmitter-receiver system. another means is the servomechanism or servo system. synchro systems can operate between shafts separated by a considerable distance but cann

12、ot supply torque amplification-the torque delivered to the load can never exceed the input torque. for this reason, and because the error angle increases when large torques are transmitted, synchro systems are employed only to turn dials and pointers, move control values, and actuate other low torqu

13、e loads. servo systems on the other hand, can supply the large torques required to move heavy loads, and only a very small torque need be applied at the input shaft. remote operation is not inherent in a servo system but may be obtained if data transmission devices, usually synchros, are made part o

14、f the system.1. basic requirements of servosa servo system is a device that has the ability to respond to and carry out an order. a servo system must be able to fulfill five basic requirements. they are:a. a servo must be able to accept an order which defines the result that is desired.b. a servo mu

15、st be able to evaluate the existing conditions.c. a servo must be able to compare the desired result with the existing conditions, obtaining a difference, or error, signal.d. a servo must be able to issue a correcting order, based on the error signal, which will properly change the existing conditio

16、ns to the desired result.e.a servo must have the means of carrying out the correcting order.in order for a servo system to meet the five basic requirements, it must possess an error detecting device and a controller that operates the load positioning motor.2. components of servo systemsa servo syste

17、m comprises an error indicator and a controller connected to the input and output shafts in the manner shown in fig. 1. the object of the servo system is to cause the output shaft to repeat the motion of the input shaft by maintaining the error angle (deviation in angular position of output shaft fr

18、om that of input shaft) as near to zero as possible. the error indicator determines the magnitude and direction of the error angle. under control of the signal from the error indicator, the controller exerts a torque on the output shaft in a direction to reduce the error. the servo is a closed-loop,

19、 or feedback system, because a signal applied to the controller causes rotation of the output shaft and thus changes the error angle with the result that an altered signal is applied to the controller.figure 1 basic servo system.the error indicator and controller may take a wide variety of forms. th

20、e controller must include a servo motor or some device for developing the output torque. servos are classified as electrical, hydraulic, pneumatic, or mechanical in accordance with the type of servo motor used. only electrical servo systems will be discussed in this course. electrical servos use ele

21、ctric motors of some sort. the controller often contains, in addition to the servo motor, a power amplifier to enable the weak signal from the error indicator lo control the large amounts of power supplied to the motor. this power amplifier is generally referred to as the servo amplifier. the error

22、indicator is most frequently a synchro device. in electrical servo systems a synchro generator and control transformer are connected mechanically to the input and output shafts. the control transformer is then the error indicator, its rotor voltage serving as input signal for the controller.the most

23、 used servo in avionics applications is the electrical servo with control transformer error indicator. a block diagram of this servo system is drawn is fig. 2. if a dc motor is used in this system, the amplifier in the figure must include a means of rectifying the alternating voltage from the synchr

24、o together with a means of increasing the power level. if an ac motor is used, an ac amplifier is required. in the system shown in fig. 2 the error angle between the input and output shafts determines the phase and magnitude of the error voltage developed by the control transformer and fed to the se

25、rvo amplifier. this in turn controls the direction and magnitude of the torque applied to the output shaft by the servo motor. many types of servo motors are used in electrical servo systems, but for avionics applications t the two-phase induction motor is most commonly used. it will be the only ser

26、vo motor discussed in this course.figure 2 block diagram of an electrical servo using a control transformer as an error detector. 3- balanced potentiometer error indi catoranother type device used as an error detector in servo systems is the balanced potentiometer (see fig. 3). in thisfigure 3 typic

27、al balanced potentiometer system.system, two potentiometers are used in a bridge circuit, where one potentiometer is a command control and the other potentiometer is mechanically coupled to the output shaft of the servomechanism. a difference between the two settings results in the production of an

28、error signal which, in turn, will cause the servo amplifier or controller to rotate the output shaft until the bridge is balanced. the error signal produced by the balanced potentiometers is used in exactly the same way as that error voltage from a control transformer.with the ct the order usually c

29、omes from a movement of a synchro transmitter shaft at some distance from the ct; but in the balanced potentiometer system, the order shaft may be attached to the rotor of the sliding contact of one potentiometer. an example of such a system is the channel selector in the arn-21 tacan transceiver. t

30、he input portion of the balanced potentiometer is located in the channel selector control head. the other part of the potentiometer is located in the transceiver unit. its sliding contact is mechanically connected to the turret containing the crystals.4. two-phase induction motorthe most important o

31、f the several types of ac motors used to drive the output shafts of servomechanisms is the two-phase induction motor. this motor has wide applications in low powered servo systems such as those used in the airborne taken range and azimuth indicator drive systems and in driving the deflection yokes o

32、n the radar ppi indicators, as well as most avionics applications. to understand servomechanisms employing induction motors it is first necessary to know the characteristics of these motors. figure 4 shows the rotor, cross section, and circuit diagram representation of a two-pole, two-phase inductio

33、n motor. stator and rotor are built of sheet steel laminations. the stator has two similar windings, coil a and coil b, arranged so their magnetic fields will be at right angles to each other. the rotor may carry either a short-circuited winding of wire or a squirrel-cage winding. the squirrel-cage

34、winding consists of conducting bars in the rotor slots the bars being short-circuited at each end of the rotor by conducting rings. the stator coils are usually supplied with alternating currents equal in magnitude but 90 degrees apart in phase. such currents may be obtained directly from a two-phas

35、e power system, or they may be obtained from a single-phase source by means of a phase shifting circuit such as that shown in fig. 4(d). as indicated in the vector diagram of fig. 4(e), the current ih in coil b lags the applied voltage e because of the inductance of the winding. the current ia in co

36、il a leads the applied voltage e because the capacitor c has a reactance greater than the inductive reactance of coil a. by proper choice of capacitor size the phase of ia with respect to e can be varied so that the phase relationship between ia and ib closely approximates 90 degrees. as a result of

37、 the currents flowing in both coils, the total flux through the rotor core is constant in magnitude and rotates about the axis of the motor at a speed determined by the frequency of the stator currents. the diagram of fig. 5 shows how the rotating flux is produced. this diagram shows the direction o

38、f the flux at various intervals in the current cycle. the top row of drawings in the figure shows the resultant flux field from the stators at 90 intervals in the current cycle.figure 4 two-pole two-phase induction motor.at any instant of time the flux shown in the diagrams is the resultant flux pro

39、duced by currents flowing in both coils. when the phase angle is 0, only coil a carries current, and the flux is directed upward along the axis of coil a. at 90, only coil b carries current, and the flux is directed to the right. at 180, the flux is directed downward because coil a carries current i

40、n the negative direction. the patterns in the top row show that the flux rotates one revolution for each cycle of the supply current. flux patterns obtained at intermediate values of phase angle, when current flows in both coils, are given in the second row of fig. 5. because the turns of the stator

41、 coils are distributed in the slots in such a way that the air gap flux density varies sinusoid ally with angle around the rotor, the flux remains constant in magnitude throughout its rotation, and the speed of rotation is constant. for example, at a phase angle of 45 coil a carries a current whose

42、magnitude is 0.707 of maximum producing a. flux in the upward direction which is 0.707 of maximum value. coil b also carries a current whose magnitude is 0.707 of maximum producing a flux to the right whose magnitude is 0.707 of maximum. the vector sum of these two flux components at right angles to each other falls at an angle of 45 and has a magnitude equal to the maximum magnitude of either individual components,figure 5 rotating field in two-phase induction motorfigure 6 relation of rotating flux to rotor currents and torque in a two-phase induction motorthe speed at which the flux

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論