




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、數(shù)學(xué)教案(七年級下冊)數(shù)學(xué)教案(七年級下冊)第五章相交線與平行線5.1.1 相交線教學(xué)目標(biāo): 1理解對頂角和鄰補角的概念,能在圖形中辨認(rèn)2掌握對頂角相等的性質(zhì)和它的推證過程3. 通過在圖形中辨認(rèn)對頂角和鄰補角,培養(yǎng)學(xué)生的識圖能力重點: 在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對頂角和鄰補角難點: 在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對頂角和鄰補角教學(xué)過程一、創(chuàng)設(shè)情境,引入課題先請同學(xué)觀察本章的章前圖,然后引導(dǎo)學(xué)生觀察,并回答問題學(xué)生活動:口答哪些道路是交錯的,哪些道路是平行的教師導(dǎo)入:圖中的道路是有寬度的,是有限長的,而且也不是完全直的,當(dāng)我們把它們看成直線時,這些直線有些是相交線,有些是平行線相交線、平行線都有許多重要
2、性質(zhì),并且在生產(chǎn)和生活中有廣泛應(yīng)用 所以研究這些問題對今后的工作和學(xué)習(xí)都是有用的,也將為后面的學(xué)習(xí)做些準(zhǔn)備我們先研究直線相交的問題,引入本節(jié)課題二、探究新知,講授新課1對頂角和鄰補角的概念學(xué)生活動:觀察上圖,同桌討論,教師統(tǒng)一學(xué)生觀點并板書【板書】 1 與 3 是直線 AB、CD相交得到的,它們有一個公共頂點 O,沒有公共邊,像這樣的兩個角叫做對頂角學(xué)生活動:讓學(xué)生找一找上圖中還有沒有對頂角,如果有,是哪兩個角?學(xué)生口答: 2 和 4 再也是對頂角緊扣對頂角定義強(qiáng)調(diào)以下兩點:( 1)辨認(rèn)對頂角的要領(lǐng):一看是不是兩條直線相交所成的角,對頂角與相交線是唇齒相依,哪里有相交直線,哪里就有對頂角,反過
3、來,哪里有對頂角,哪里就有相交線;二看是不是有公共頂點;三看是不是沒有公共邊 符合這三個條件時,才能確定這兩個角是對頂角, 只具備一個或兩個條件都不行( 2)對頂角是成對存在的,它們互為對頂角,如1 是 3 的對頂角,同時, 3 是 1的對頂角,也常說 1 和 3 是對頂角2對頂角的性質(zhì)提出問題:我們在圖形中能準(zhǔn)確地辨認(rèn)對頂角,那么對頂角有什么性質(zhì)呢?學(xué)生活動:學(xué)生以小組為單位展開討論,選代表發(fā)言,井口答為什么【板書】 1 與 2 互補, 3 與 2 互補(鄰補角定義), l 3(同角的補角相等) 第 1頁共 60頁數(shù)學(xué)教案(七年級下冊)注意: l 與 2 互補不是給出的已知條件, 而是分析圖
4、形得到的; 所以括號內(nèi)不填已知,而填鄰補角定義或?qū)懗桑?1180 2, 3180 2(鄰補角定義), 1 3(等量代換)學(xué)生活動:例題比較簡單, 教師不做任何提示,讓學(xué)生在練習(xí)本上獨立完成解題過程, 請一個學(xué)生板演。解: 3 1 40(對頂角相等) 2 180 40 140(鄰補角定義) 4 2140(對頂角相等)三、范例學(xué)習(xí)學(xué)生活動:讓學(xué)生把例題中 1 40這個條件換成其他條件,而結(jié)論不變,自編幾道題變式 1:把 l 40變?yōu)?2 1 40變式 2:把 140變?yōu)?2 是 l 的 3 倍變式 3:把 140變?yōu)?1: 2 2: 9四、課堂小結(jié)學(xué)生活動:表格中的結(jié)論均由學(xué)生自己口答填出角的名稱
5、特征兩條直線相交面成的角對頂角有一個公共頂點沒有公共邊兩條直線相交面成的角鄰補角有一個公共頂點有一條公共邊五、布置作業(yè): 課本 P3 練習(xí)性質(zhì)相同點不同點對頂對頂角沒有公共邊角都是兩直線而鄰補角有一條公共相等相交而成的角,邊;兩條直線相交時,都有一個公共鄰補一個有的對頂角有一頂點,它們都是角個,而一個角的鄰補角成對出現(xiàn)?;パa有兩個。5.1.2 垂線 ( 第一課時 )教學(xué)目標(biāo): 1. 經(jīng)歷觀察、操作、想像、歸納概括、交流等活動 , 進(jìn)一步發(fā)展空間觀念 , 用幾何語言準(zhǔn)確表達(dá)能力 .2. 了解垂直概念 , 能說出垂線的性質(zhì)“經(jīng)過一點 , 能畫出已知直線的一條垂線 , 并且只能畫出一條垂線” , 會
6、用三角尺或量角器過一點畫一條直線的垂線 .重點兩條直線互相垂直的概念、性質(zhì)和畫法 . 教學(xué)過程一、創(chuàng)設(shè)問題情境第 2頁共 60頁數(shù)學(xué)教案(七年級下冊)1. 學(xué)生觀察教室里的課桌面、 黑板面相鄰的兩條邊 , 方格紙的橫線和豎線 , 思考這些給大家什么印象 ?在學(xué)生回答之后 , 教師指出 : “垂直”兩個字對大家并不陌生 , 但是垂直的意義 , 垂線有什么性質(zhì) , 我們不一定都了解 , 這可是我們要學(xué)習(xí)的內(nèi)容 .2. 學(xué)生觀察課本 P3圖 5.1-4 思考 : 固定木條 a, 轉(zhuǎn)動木條 , 當(dāng) b 的位置變化時 ,a 、 b 所成的角 a 是如何變化的 ?其中會有特殊情況出現(xiàn)嗎 ?當(dāng)這種情況出現(xiàn)時
7、 ,a 、 b 所成的四個角有什么特殊關(guān)系 ?教師在組織學(xué)生交流中 , 應(yīng)學(xué)生明白 : 當(dāng) b 的位置變化時 , 角 a 從銳角變?yōu)殁g角 , 其中a是直角是特殊情況 . 其特殊之處還在于 : 當(dāng)a是直角時 , 它的鄰補角 , 對頂角都是直角 , 即 a、b 所成的四個角都是直角 , 都相等 .3. 師生共同給出垂直定義 .師生分清“互相垂直”與“垂線”的區(qū)別與聯(lián)系:“互相垂直”指兩條直線的位置關(guān)系;“垂線”是指其中一條直線對另一條直線的命名。 如果說兩條直線“互相垂直”時, 其中一條必定是另一條的“垂線”,如果一條直線是另一條直線的“垂線”,則它們必定“互相垂直”。4. 垂直的表示法 .垂直用
8、符號“”來表示,結(jié)合課本圖5.1 5 說明“直線 AB垂直于直線 CD,垂足為 O”,則記為 ABCD,垂足為 O,并在圖中任意一個角處作上直角記號 , 如圖 .5. 簡單應(yīng)用(1) 學(xué)生觀察課本 P6 圖 5.1-6 中的一些互相垂直的線條 , 并再舉出生活中其他實例 .(2) 判斷以下兩條直線是否垂直 :兩條直線相交所成的四個角中有一個是直角;兩條直線相交所成的四個角相等;兩條直線相交 , 有一組鄰補角相等 ;兩條直線相交 , 對頂角互補 .二、畫圖實踐 , 探究垂線的性質(zhì)1. 學(xué)生用三角尺或量角器畫已知直線 L 的垂線 .(1) 已知直線 L( 教師在黑板上畫一條直線 L), 畫出直線
9、L 的垂線 . 待學(xué)生上黑板畫出 L 的垂線后 , 教師追問學(xué)生 : 還能畫出 L 的垂線嗎 ?能畫幾條 ?通過師生交流 , 使學(xué)生明確直線 L的垂線有無數(shù)多條 , 即存在 , 但有不確定性 . 教師再問 : 怎樣才能確定直線 L 的垂線位置 ?在學(xué)生道出 : 在直線 L 上取一點A, 過點 A 畫 L 的垂線 , 并且動手畫出圖形 .教師板書學(xué)生的結(jié)論 : 經(jīng)過直線上一點有且只有一條直線與已知直線垂直 .(2) 經(jīng)過直線 L 外一點 B 畫直線 L 的垂線 , 這樣的垂線能畫出幾條 ?從中你又得出什么結(jié)論 ? 教師板書學(xué)生的結(jié)論 : 經(jīng)過直線外一點有且只有一條直線與已知直線垂直 .教師讓學(xué)生
10、通過畫圖操作所得兩條結(jié)論合并成一條 , 并板書 :垂線性質(zhì) 1: 過一點有且只有一條直線與已知直線垂直 .2. 變式訓(xùn)練 , 鞏固垂線的概念和畫法 , 如圖根據(jù)下列語句畫圖 :(1) 過點 P 畫射線 MN的垂線 ,Q 為垂足 ;(2) 過點 P 畫射線 BN的垂線 , 交射線 BN反向延長線于 Q點;(3) 過點 P 畫線段 AB的垂線 , 交線 AB延長線于 Q點.學(xué)生畫完圖后 , 教師歸結(jié) : 畫一條射線或線段的垂線 , 就是畫它們所在直線的垂線 . 三、課堂小結(jié)本節(jié)學(xué)習(xí)了互相垂直、 垂線等概念 , 還學(xué)習(xí)了過一點畫已知直線的垂線的畫法, 并得出垂線一條性質(zhì) , 你能說出相關(guān)的內(nèi)容嗎 ?
11、四、布置作業(yè): 課本 P7 練習(xí) ,P9.3,4,5,9.第 3頁共 60頁數(shù)學(xué)教案(七年級下冊)5.1.2 垂線 ( 第二課時 )教學(xué)目標(biāo): 1. 經(jīng)歷觀察、操作、想像、歸納概括、交流等活動,進(jìn)一步發(fā)展空間觀念,用幾何語言準(zhǔn)確表達(dá)能力。 2. 了解垂線段的概念 , 了解垂線段最短的性質(zhì) , 體會點到直線的距離的意義 , 并會度量點到直線的距離 .教學(xué)重點 : “垂線段最短”的性質(zhì) , 點到直線的距離的概念及其簡單應(yīng)用.教學(xué)難點 : 對點到直線的距離的概念的理解.教學(xué)過程一、創(chuàng)設(shè)問題情境1. 教師展示課本圖 5.1-8, 提出問題 : 要把河中的水引到農(nóng)田 P 處 , 如何挖渠能使渠道最短 ?
12、 學(xué)生看圖、思考 .2. 教師以問題串形式 , 啟發(fā)學(xué)生思考 .(1) 問題 1, 上學(xué)期我們曾經(jīng)學(xué)過什么最短的知識 , 還記得嗎 ? 學(xué)生說出 : 兩點間線段最短 .(2) 問題 2, 如果把渠道看成是線段 , 它的一個端點自然是 P, 那么另一個端點的位置呢 ?把江河看成直線 L, 那么原問題就是怎么的數(shù)學(xué)問題 .問題 2 使學(xué)生能用數(shù)學(xué)眼光思考: 在連接直線 L 外一點 P 與直線 L 上各點的線段中 , 哪一條最短 ?3. 教師演示教具 , 給學(xué)生直觀的感受 .教具如圖 : 在硬紙板上固定木條L,L 外一點 P, 轉(zhuǎn)動的木條 a 一端固定在點 P.使木條 L 與 a 相交 , 左右擺動
13、木條a,L 與 a 的交點 A 隨之變化 , 線段 PA長度也隨之變化 .PA 最短時 ,a 與 L 的位置關(guān)系如何 ?用三角尺檢驗 .4. 學(xué)生畫圖操作 , 得出結(jié)論 .(1) 畫出直線 L,L 外一點 P;(2) 過 P 點出 POL, 垂足為 O;(3) 點 A1,A 2,A 3在 L 上 , 連接 PA、PA2、 PA3;(4) 用疊合法或度量法比較 PO、PA1、PA2 、PA3長短 . 5. 師生交流 , 得出垂線的另一條性質(zhì) .教師板書 : 連接直線外一點與直線上各點的所有線段中 , 垂線段最短 .簡單說成 : 垂線段最短 .關(guān)于垂線段教師可讓學(xué)生思考 :(1) 垂線段與垂線的區(qū)
14、別聯(lián)系 .(2) 垂線段與線段的區(qū)別與聯(lián)系 . 二、點到直線的距離1. 師生根據(jù)兩點間的距離的意義給出點到直線的距離命名.結(jié)合課本圖形 ( 圖 5.1-9), 深入認(rèn)識垂線段 PO:POL, POA=90,O 為垂足 , 垂線段 PO的長度比其他線段 PA1、 PA2中是最短的 .按照兩點間的距離給點到直線的距離命名, 教師板書 :直線外一點到這條直線的垂線段的長度, 叫做點到直線的距離 .在圖 5.1-9 中,PO 的長度是點 P 到直線 L 的距離 , 其余結(jié)論 PA、PA2 長度都不是點P 到 L 的距離 .2、練習(xí)課本 P6練習(xí)三、課堂小結(jié):通過這節(jié)課,我們主要學(xué)習(xí)了什么呢?四、布置作
15、業(yè): 課本 P9.6,P10.10,11,12,P11觀察與猜想 .第 4頁共 60頁數(shù)學(xué)教案(七年級下冊)5.1.3 同位角、內(nèi)錯角、同旁內(nèi)角教學(xué)目標(biāo): 1、理解同位角、內(nèi)錯角、同旁內(nèi)角的概念;2、會識別同位角、內(nèi)錯角、同旁內(nèi)角 .重點:同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別;難點:識別同位角、內(nèi)錯角、同旁內(nèi)角。教學(xué)過程一、導(dǎo)入新課前面我們研究了一條直線與另一條直線相交的情形, 接下來,我們進(jìn)一步研究一條直線分別與兩條直線相交的情形。二、同位角、內(nèi)錯角、同旁內(nèi)角如圖,直線 a、 b 與直線 c 相交,或者說,兩條直線a、 b 被第三條直線 c 所截,得到八個角。我們來研究那些沒有公共頂點的兩個
16、角的關(guān)系。c5 1346 27 8ab1 與 2、 4 與 8、 5 與 6、 3 與 7 有什么位置關(guān)系?在截線的同旁,被截直線的同方向(同上或同下).具有這種位置關(guān)系的兩個角叫做同位角 。同位角形如字母“ F”。3 與 2、 4 與 6 的位置有什么共同的特點?在截線的兩旁,被截直線之間。具有這種位置關(guān)系的兩個角叫做內(nèi)錯角 .內(nèi)錯角形如字母“ Z”。3 與 6、 4 與 2 的位置有什么共同的特點?在截線的同旁,被截直線之間。具有這種位置關(guān)系的兩個角叫做同旁內(nèi)角 .同旁內(nèi)角形如字母“ U”。思考:這三類角有什么相同的地方?(1)都不相鄰即不存在共公頂點; ( 2)有一邊在同一條直線(截線)
17、上。三、例題例如圖,直線 DE,BC被直線 AB所截,(1) 1 與 2、1 與 3、1 與 4 各是什么角?為什么?( 2)如果 1=4,那么 1 與 2 相等嗎? 1 與 3 互補嗎?為什么?A4D 23E1BC解:(1)1 與 2 是內(nèi)錯角,因為 1 與 2 在直線 DE,BC之間,在截線 AB的兩旁; 1 與 3 是同旁內(nèi)角,因為 1 與 3 在直線 DE,BC之間,在截線 AB的同旁; 1 與 4 是同位角,因第 5頁共 60頁數(shù)學(xué)教案(七年級下冊)為 1 與 4 在直線 DE,BC的同方向,在截線 AB的同方向。( 2)如果 1=4,又因為 2=4,所以 1= 2;因為 3+4=1
18、800 ,又 1=4,所以 1+3=1800 ,即 1 與 3 互補。四、課堂小結(jié): 通過這節(jié)課,我們主要學(xué)習(xí)了什么呢?五、布置作業(yè) : 課本 P7 練習(xí) 1、2 題5.2.1 平行線教學(xué)目標(biāo) 1. 經(jīng)歷觀察教具模式的演示和通過畫圖等操作, 交流歸納與活動 , 進(jìn)一步發(fā)展空間觀念 .2. 了解平行線的概念、平面內(nèi)兩條直線的相交和平行的兩種位置關(guān)系 , 知道平行公理以及平行公理的推論 .3. 會用符號語方表示平行公理推論 , 會用三角尺和直尺過已知直線外一點畫這條直線的平行線 . 重點 : 探索和掌握平行公理及其推論 .難點 : 對平行線本質(zhì)屬性的理解, 用幾何語言描述圖形的性質(zhì).教學(xué)過程一、創(chuàng)
19、設(shè)問題情境1. 復(fù)習(xí)提問 : 兩條直線相交有幾個交點 ?相交的兩條直線有什么特殊的位置關(guān)系 ?學(xué)生回答后 , 教師把教具中木條 b 與 c 重合在一起 , 轉(zhuǎn)動木條 a 確認(rèn)學(xué)生的回答 . 教師接著問 : 在平面內(nèi) , 兩條直線除了相交外 , 還有別的位置關(guān)系嗎 ?2. 教師演示教具 .順時針轉(zhuǎn)動木條b 兩圈 , 讓學(xué)生思考 : 把 a、b 想像成兩端可以無限延伸的兩條直線, 順時針轉(zhuǎn)動 b時 , 直線 b 與直線 a 的交點位置將發(fā)生什么變化 ?在這個過程中 , 有沒有直線 b 與 c 木相交的位置 ?3. 教師組織學(xué)生交流并形成共識 .轉(zhuǎn)動 b 時, 直線 b 與 c 的交點從在直線 a
20、上 A 點向左邊距離 A 點很遠(yuǎn)的點逐步接近 A 點, 并垂合于 A 點, 然后交點變?yōu)樵?A 點的右邊 , 逐步遠(yuǎn)離 A 點. 繼續(xù)轉(zhuǎn)動下去 ,b 與 a 的交點就會從 A 點的左邊又轉(zhuǎn)動 A 點的左邊可以想象一定存在一個直線b 的位置 , 它與直線 a 左右兩旁都沒有交點 .ccaaAb二、平行線定義表示法Bb1. 結(jié)合演示的結(jié)論 , 師生用數(shù)學(xué)語言描述平行定義 : 同一平面內(nèi) , 存在一條直線 a 與直線 b 不相交的位置 , 這時直線 a 與 b 互相平行 . 換言之 , 同一平面內(nèi) , 不相交的兩條直線叫做平行線 .直線 a 與 b 是平行線 , 記作“” , 這里“”是平行符號 .
21、教師應(yīng)強(qiáng)調(diào)平行線定義的本質(zhì)屬性 , 第一是同一平面內(nèi)兩條直線 , 第二是設(shè)有交點的兩條直線 .2. 同一平面內(nèi) , 兩條直線的位置關(guān)系教師引導(dǎo)學(xué)生從同一平面內(nèi), 兩條直線的交點情況去確定兩條直線的位置關(guān)系.在同一平面內(nèi) , 兩條直線只有兩種位置關(guān)系 : 相交或平行 , 兩者必居其一 . 即兩條直線不相交就是平行 , 或者不平行就是相交 .三、畫圖、觀察、歸納概括平行公理及平行公理推論1. 在轉(zhuǎn)動教具木條 b 的過程中 , 有幾個位置能使 b 與 a 平行 ?本問題是學(xué)生直覺直線b 繞直線 a 外一點 B 轉(zhuǎn)動時 , 有并且只有一個位置使a 與 b 平行 .2. 用直線和三角尺畫平行線.已知 :
22、 直線 a, 點 B, 點 C.(1) 過點 B 畫直線 a 的平行線 , 能畫幾條 ?C第6頁共 60頁Ba數(shù)學(xué)教案(七年級下冊)(2) 過點 C畫直線 a 的平行線 , 它與過點 B 的平行線平行嗎 ?3. 通過觀察畫圖、歸納平行公理及推論 .(1) 由學(xué)生對照垂線的第一性質(zhì)說出畫圖所得的結(jié)論.(2) 在學(xué)生充分交流后 , 教師板書 .平行公理 : 經(jīng)過直線外一點 , 有且只有一條直線與這條直線平行.(3) 比較平行公理和垂線的第一條性質(zhì) .共同點 : 都是“有且只有一條直線”, 這表明與已知直線平行或垂直的直線存在并且是唯一的.不同點 : 平行公理中所過的“一點”要在已知直線外 , 兩垂
23、線性質(zhì)中對“一點”沒有限制 , 可在直線上 , 也可在直線外 .4. 歸納平行公理推論 .(1)學(xué)生直觀判定過 B 點、 C 點的 a 的平行線 b、 c 是互相平行 .c(2)從直線 b、c 產(chǎn)生的過程說明直線b直線 c.b(3)學(xué)生用三角尺與直尺用平推方驗證bc.(4) 師生用數(shù)學(xué)語言表達(dá)這個結(jié)論 , 教師板書 .結(jié)果兩條直線都與第三條直線平行 , 那么這條直線也互相平行 . a 結(jié)合圖形 , 教師引導(dǎo)學(xué)生用符號語言表達(dá)平行公理推論 :如果 ba,c a, 那么 bc.(5) 簡單應(yīng)用 .練習(xí) : 如果多于兩條直線 , 比如三條直線 a、b、c 與直線 L 都平行 , 那么這三條直線互相平
24、行嗎 ? 請說明理由 .本練習(xí)是讓學(xué)生在反復(fù)運用平行公理推論中掌握平行公理推論以及說理規(guī)范.四、作業(yè): 課本 P19.7,P20.11.5.2.2 平行線的判定(一)教學(xué)目標(biāo): 經(jīng)歷探索兩直線平行條件的過程,理解兩直線平行的條件.重點: 探索兩直線平行的條件難點:理解“同位角相等, 兩條直線平行”教學(xué)過程一、情景導(dǎo)入 .裝修工人正在向墻上釘木條, 如果木條 b 與墻壁邊緣垂直, 那么木條 a 與墻壁邊緣所夾角為多少度時,才能使木條 a 與木條 b 平行?要解決這個問題,就要弄清楚平行的判定。二、直線平行的條件以前我們學(xué)過用直尺和三角尺畫平行線,如圖(課本 P13 圖 5.2-5 )在三角板移動
25、的過程中,什么沒有變?三角板經(jīng)過點 P 的邊與靠在直尺上的邊所成的角沒有變。簡化圖 5.2-5 ,得圖 3.ECH PD1AG 2BF圖 3第 7頁共 60頁數(shù)學(xué)教案(七年級下冊)1 與 2 是三角板經(jīng)過點P 的邊與靠在直尺上的邊所成的角移動前后的位置,顯然 1 與 2是同位角并且它們相等,由此我們可以知道什么?兩條直線被第三條直線所截, 如果同位角相等 , 那么這兩條直線平行 .簡單地說 : 同位角相等 , 兩條直線平行 .符號語言: 1=2ABCD.如圖(課本 P145.2-7 ),你能說出木工用圖中這種叫做角尺的工具畫平行線的道理嗎?用角尺畫平行線,實際上是畫出了兩個直角,根據(jù)“同位角相
26、等 , 兩條直線平行 . ”,可知這樣畫出的就是平行線。如圖,(1)如果 2=3,能得出 ab 嗎?( 2)如果 2 41800,能得出 ab 嗎?c(1) 2= 3(已知) 3= 1(對頂角相等)1a 3 4 1= 2(等量代換 )2a b(同位角相等 ,兩條直線平行)b你能用文字語言概括上面的結(jié)論嗎?兩條直線被第三條直線所截, 如果內(nèi)錯角相等 , 那么這兩條直線平行 .簡單地說: 內(nèi)錯角相等 , 兩直線平行 .符號語言: 2=3ab.(2) 4+2=180, 4+1=180(已知) 2=1(同角的補角相等)ab. (同位角相等 , 兩條直線平行)你能用文字語言概括上面的結(jié)論嗎?兩條直線被第
27、三條直線所截, 如果同旁內(nèi)角互補 , 那么兩條直線平行 .簡單地說: 同旁內(nèi)角互補 , 兩直線平行 .符號語言: 4+2=180 ab.四、課堂練習(xí)01、課本 P15練習(xí) 1,補充( 3)由 A+ABC180 可以判斷哪兩條直線平行?依據(jù)是什么?五、課堂小結(jié): 怎樣判斷兩條直線平行?六、布置作業(yè): P161、 2 題; P174、5、6。5.2.2 平行線的判定(二)教學(xué)目標(biāo) 1、掌握直線平行的條件,并能解決一些簡單的問題;2、初步了解推理論證的方法,會正確的書寫簡單的推理過程。重點: 直線平行的條件及運用難點: 會正確的書寫簡單的推理過程是教學(xué)過程一、復(fù)習(xí)導(dǎo)入我們學(xué)習(xí)過哪些判斷兩直線平行的方
28、法?(1)平行線的定義:在同一平面內(nèi)不相交的兩條直線平行。(2)平行公理的推論:如果兩條直線都平行于第三條直線,那么這兩條直線也互相平行。(3)兩直線平行的條件: 兩條直線被第三條直線所截, 如果同位角相等 , 那么這兩條直線平行 .兩條直線被第三條直線所截, 如果內(nèi)錯角相等 , 那么這兩條直線平行 .兩條直線被第三條直線所截, 如果同旁內(nèi)角互補 , 那么這兩條直線平行 .第 8頁共 60頁數(shù)學(xué)教案(七年級下冊)二、例題例在同一平面內(nèi) , 如果兩條直線都垂直于同一條直線, 那么這兩條直線平行 嗎 ?為什么 ?解:這兩條直線平行。baca(已知) 1=2=90(垂直的定義)bc(同位角相等,兩直
29、線平行)你還能用其它方法說明 bc嗎?方法一:如圖( 1),利用“內(nèi)錯角相等角相等 , 兩直線平行”說明 .bc12a, 兩直線平行”說明;方法二:如圖(2),利用“同旁內(nèi)bcbc112aa2(1)(2)注意:本例也是一個有用的結(jié)論。例 2 如圖,點 B 在 DC上, BE平分 ABD,DBE=A, 則 BE AC,請說明理由。AEDBC分析:由 BE平分 ABD我們可以知道什么?聯(lián)系 DBE=A,我們又可以知道什么?由此能得出 BE AC嗎?為什么?解: BE平分 ABD ABE=DBE(角平分線的定義)又 DBE= A ABE= A(等量代換)BEAC(內(nèi)錯角相等,兩直線平行)注意:用符號
30、語言書寫證明過程時,要步步有據(jù)。四、課堂練習(xí)1、如圖, 1= 2=55,試說明直線AB,CD平行?ACd eE 113232F4BDabc1 題2 題2、如圖所示 , 已知直線 a,b,c,d,e, 且 1=2, 3+ 4=180, 則 a 與 c 平行嗎 ?為什么 ? 五、布置作業(yè) :課本 P17 第 7 題, P18第 12 題(提示:畫圖說明) 。5.3.1 平行線的性質(zhì)教學(xué)目標(biāo): 1. 經(jīng)歷觀察、操作、想像、推理、交流等活動,進(jìn)一步發(fā)展空間觀念,推理能力和有第 9頁共 60頁數(shù)學(xué)教案(七年級下冊)條理表達(dá)能力。2. 經(jīng)歷探索直線平行的性質(zhì)的過程 , 掌握平行線的三條性質(zhì) , 并能用它們
31、進(jìn)行簡單的推理和計算 . 重點 : 探索并掌握平行線的性質(zhì) , 能用平行線性質(zhì)進(jìn)行簡單的推理和計算 .難點 : 能區(qū)分平行線的性質(zhì)和判定 , 平行線的性質(zhì)與判定的混合應(yīng)用 . 教學(xué)過程一、引導(dǎo)學(xué)生逆向思維現(xiàn)在同學(xué)們已經(jīng)掌握了利用同位角相等 , 或者內(nèi)錯角相等 , 或者同旁內(nèi)角互補 , 判定兩條直線平行的三種方法 . 在這一節(jié)課里 : 大家把思維的指向反過來 : 如果兩條直線平行 , 那么同位角、內(nèi)錯角、同旁內(nèi)角的數(shù)量關(guān)系又該如何表達(dá) ?二、實踐探究1. 學(xué)生畫圖活動 : 用直尺和三角尺畫出兩條平行線 ab, 再畫一條截線 c 與直線 a、b 相交 , 標(biāo)出所形成的八個角 ( 如課本 P21圖
32、5.3-1).2. 學(xué)生測量這些角的度數(shù) , 把結(jié)果填入表內(nèi) .角23456781度數(shù)3. 學(xué)生根據(jù)測量所得數(shù)據(jù)作出猜想 .(1)圖中哪些角是同位角 ?它們具有怎樣的數(shù)量關(guān)系 ?(2)圖中哪些角是內(nèi)錯角 ?它們具有怎樣的數(shù)量關(guān)系 ?(3)圖中哪些角是同旁內(nèi)角?它們具有怎樣的數(shù)量關(guān)系?4. 學(xué)生驗證猜測 .學(xué)生活動 : 再任意畫一條截線d, 同樣度量并計算各個角的度數(shù), 你的猜想還成立嗎 ?5. 師生歸納平行線的性質(zhì) , 教師板書 . 平行線具有性質(zhì) :性質(zhì) 1: 兩條平行線被第三條直線所截 , 同位角相等 , 簡稱為兩直線平行 , 同位角相等 .性質(zhì) 2: 兩條平行線被第三條直線所截 , 內(nèi)錯
33、角相等 , 簡稱為兩直線平行 , 內(nèi)錯相等 .性質(zhì) 3: 兩條直線按被第三條線所截, 同旁內(nèi)角互補 , 簡稱為兩直線平行 , 同旁內(nèi)角互補 .教師讓學(xué)生結(jié)合右圖 , 用符號語言表達(dá)平行線的這三條性質(zhì) , 教師同時板書平行線的性質(zhì)和平行線的判定 .平行線的性質(zhì)平行線的判定1a3 4因為 ab, 因為 1=2,2所以 1=2所以 ab.b因為 ab, 因為 2=3,所以 2=3, 所以 ab.c因為 ab, 因為 2+4=180,所以 2+4=180, 所以 ab.6. 教師引導(dǎo)學(xué)生理清平行線的性質(zhì)與平行線判定的區(qū)別 .學(xué)生交流后 , 師生歸納 : 兩者的條件和結(jié)論正好相反:由角的數(shù)量關(guān)系 ( 指
34、同位角相等 , 內(nèi)錯角相等 , 同旁內(nèi)角互補 ), 得出兩條直線平行的論述是平行線的判定 , 這里角的關(guān)系是條件 , 兩直線平行是結(jié)論 .由已知的兩條直線平行得出角的數(shù)量關(guān)系 ( 指同位角相等 , 內(nèi)錯角相等 , 同旁內(nèi)角互補 ) 的論述是平行線的性質(zhì) , 這里兩直線平行是條件 , 角的關(guān)系是結(jié)論 .7. 進(jìn)一步研究平行線三條性質(zhì)之間的關(guān)系 .教師 : 大家能根據(jù)性質(zhì)1, 推出性質(zhì) 2 成立的道理嗎 ?第 10頁共 60頁數(shù)學(xué)教案(七年級下冊)結(jié)合上圖 , 教師啟發(fā)分析 : 考察性質(zhì) 1、性質(zhì) 2 的結(jié)論發(fā)生了什么變化 ?學(xué)生回答1 換成 3, 教師再問1與3有什么關(guān)系 ?并完成說理過程 ,
35、教師糾正學(xué)生錯誤 , 規(guī)范地給出說理過程 .因為 ab, 所以 1=2( 兩直線平行 , 同位角相等 ); 又 3=1( 對頂角相等 ), 所以 2=3.教師說明 : 這是有兩步的說理 , 第一步推理根據(jù)平行線性質(zhì) 1, 第二步推理的條件不僅有 1=2, 還有 3=1. 2=3是根據(jù)等式性質(zhì) . 根據(jù)等式性質(zhì)得到的結(jié)論可以不寫理由 .學(xué)生仿照以下說理 , 說出如何根據(jù)性質(zhì)1 得到性質(zhì) 3 的道理 .8. 平行線性質(zhì)應(yīng)用 .講解課本 P23例題三、鞏固練習(xí): 課本練習(xí) (P22).四、作業(yè): 課本 P25.1,2,3,4,6.5.3.2 命題、定理教學(xué)目的: 1、知識與技能:了解命題的概念,并能
36、區(qū)分命題的題設(shè)和結(jié)論.2、經(jīng)歷判斷命題真假的過程,對命題的真假有一個初步的了解.3、初步培養(yǎng)學(xué)生不同幾何語言相互轉(zhuǎn)化的能力.重點: 命題的概念和區(qū)分命題的題設(shè)與結(jié)論.難點: 區(qū)分命題的題設(shè)和結(jié)論 .教學(xué)過程一、創(chuàng)設(shè)情境復(fù)習(xí)導(dǎo)入教師出示下列問題:1.平行線的判定方法有哪些?2.平行線的性質(zhì)有哪些 .學(xué)生能積極的思考教師所出示的各個問題復(fù)習(xí)鞏固有關(guān)的知識點為本節(jié)課的學(xué)習(xí)打下良好的基礎(chǔ) .(注意 :平行線的判定方法三種 ,另外還有平行公理的推論 )二、嘗試活動探索新知教師給出下列語句 ,如果兩條直線都與第三條直線平行 ,那么這條直線也互相平行 ;等式兩邊都加同一個數(shù) ,結(jié)果仍是等式 ; 對頂角相等
37、;如果兩條直線不平行 ,那么同位角不相等 .學(xué)生學(xué)生能由教師的引導(dǎo)分析每個語句的特點 .思考:你能說一說這 4 個語句有什么共同點嗎?并能耐總結(jié)出這些語句都是對某一件事情作出 “是 ”或“不是 ”的判斷 .初步感受到有些數(shù)學(xué)語言是對某件事作出判斷的 .教師給出命題的定義 .判斷一件事情的語句 ,叫做命題 .(3)命題的組成 .命題由題設(shè)和結(jié)論兩部分組成 .題設(shè)是已知事項 ,結(jié)論是由已知事項推出的事項 . 命題的形成,可以寫成“如果,那么”的形式。真命題與假命題:教師出示問題:如果兩個角相等,那么它們是對頂角.如果 ab.b c 那么 a=b如果兩個角互補,那么它們是鄰補角.第 11頁共 60頁
38、數(shù)學(xué)教案(七年級下冊)三、嘗試反饋理解新知明確命題有正確與錯誤之分:命題的正確性是我們經(jīng)過推理證實的,這樣得到的真命題叫做定理,作為真命題,定理也可以作為繼續(xù)推理的依據(jù) .1. “等式兩邊乘同一個數(shù),結(jié)果仍是等式 ”是命題嗎?它們題設(shè)和結(jié)論分別是什么?2.命題 “兩條平行線被第三第直線所截, 內(nèi)錯角相等 ”是正確的?命題 “如果兩個角互補, 那么它們是鄰補角 ”是正確嗎?再舉出一些命題的例子,判斷它們是否正確 .四、總結(jié)拓展: 教師引導(dǎo)學(xué)生完成本節(jié)課的小結(jié),強(qiáng)調(diào)重要的知識點.五、布置作業(yè): 習(xí)題 5.3 第 11 題.5.4 平移教學(xué)目標(biāo): 1、了解平移的概念,會進(jìn)行點的平移,理解平移的性質(zhì),
39、能解決簡單的平移問題2、培養(yǎng)學(xué)生的空間觀念,學(xué)會用運動的觀點分析問題.重點 : 平移的概念和作圖方法 .難點 : 平移的作圖 .教學(xué)過程一 . 觀察圖形形成印象生活中有許多美麗的圖案,他們都有著共同的特點,請同學(xué)們欣賞下面圖案.觀察上面圖形 , 我們發(fā)現(xiàn)他們都有一個局部和其他部分重復(fù) , 如果給你一個局部 , 你能復(fù)制他們嗎 ? 學(xué)生思考討論 , 借助舉例說明 .二 . 提出新知實踐探索平移 :(1) 把一個圖形整體沿某一方向移動 , 會得到一個新的圖形 , 新圖形與原圖形的形狀和大小完全相同 .(2) 新圖形中的每一點 , 都是由原圖形中的某一個點移動后得到的 , 這兩個點是對應(yīng)點 .(3)
40、 連接各組對應(yīng)的線段平行且相等 . 圖形的這種變換 , 叫做平移變換 , 簡稱平移探究 : 設(shè)計一個簡單的圖案 , 利用一張半透明的紙附在上面, 繪制一排形狀 , 大小完全一樣的圖案引導(dǎo)學(xué)生找規(guī)律 , 發(fā)現(xiàn)平移特征第 12頁共 60頁數(shù)學(xué)教案(七年級下冊)三 . 典例剖析深化鞏固例如圖 ,(1) 平移三角形 ABC,使點 A 運動到 A, 畫出平移后的 ABC 先觀察探討 , 再通過點的平移 , 線段的平移總結(jié)規(guī)律 , 給出定義探究活動可以使學(xué)生更進(jìn)一步了解平移四、鞏固練習(xí) 課本 33 頁:1,2,4,5,6,7五、小結(jié):在平移過程中 , 對應(yīng)點所連的線段也可能在一條直線上 , 當(dāng)圖形平移的方
41、向是沿著一邊所在直線的方向時 , 那么此邊上的對應(yīng)點必在這條直線上。 2 利用平移的特征 , 作平行線 , 構(gòu)造等量關(guān)系是接 7 題常用的方法 .六、作業(yè) 課本 P33 頁習(xí)題 5.4 第 3 題第五章小結(jié)教學(xué)目標(biāo): 1.經(jīng)歷對本章所學(xué)知識回顧與思考的過程 ,將本章內(nèi)容條理化 ,系統(tǒng)化 ,梳理本章的知識結(jié)構(gòu) .2.通過對知識的疏理 ,進(jìn)一步加深對所學(xué)概念的理解 ,進(jìn)一步熟悉和掌握幾何語言 ,能用語言說明幾何圖形 .3.使學(xué)生認(rèn)識平面內(nèi)兩條直線的位置關(guān)系 ,在研究平行線時 ,能通過有關(guān)的角來判斷直線平行和反映平行線的性質(zhì) ,理解平移的性質(zhì) ,能利用平移設(shè)計圖案 .重點 :復(fù)習(xí)正面內(nèi)兩條直線的相交
42、和平行的位置關(guān)系,以及相交平行的綜合應(yīng)用.難點 :垂直、平行的性質(zhì)和判定的綜合應(yīng)用.教學(xué)過程一、復(fù)習(xí)提問本章相交線、平行線中學(xué)習(xí)了哪些主要問題 ?教師根據(jù)學(xué)生的回答 ,逐步形成本章的知識結(jié)構(gòu)圖 , 使所學(xué)知識系統(tǒng)化 .二、回顧與思考兩線鄰補角 , 對頂角對頂角相等條相垂線及其性質(zhì)點到直線的距離直交相兩三平線條條交面的直直同位角 , 內(nèi)錯角 , 同旁內(nèi)角內(nèi)位線線兩置被所條關(guān)第截性質(zhì)直系平平行公理行判定平移1.對頂角、鄰補角。(1)教師提出問題兩條直線相交、構(gòu)成哪兩種特殊位置關(guān)系的角?指出圖 (1)中具有這兩種位置的角 .第 13頁共 60頁數(shù)學(xué)教案(七年級下冊)caA13CBCODOBAD24b
43、(1)(2)(3)如圖 (2)中,若 AOD=90 ,那么直線 AB,CD 的位置關(guān)系如何 ?如圖 (3)中, 1 與 2, 2 與 3,3 與 4 是怎么位置關(guān)系的角 ?(2)學(xué)生回答 .(3)教師強(qiáng)調(diào) :對頂角、鄰補角是由兩條相交面而成的具有特殊位置關(guān)系的角,要抓住對頂角的特征,有公共頂角,角的兩邊互為反向延長線;鄰補角的特征:有公共頂有一條公共邊,另一邊互為反向延長線。(4)對頂角有什么性質(zhì) ?(對頂角相等 )如果兩個對頂角互補或鄰補角相等,你得到什么結(jié)論 ?讓學(xué)生明確 ,對頂角總是相等 ,鄰補角一定互補 ,但加上其他條件如對頂角或鄰補角相等后 ,那么問題中每個角的度數(shù)就隨之確定 ,為
44、90角,這時兩條直線互相垂直 .2.垂線及其性質(zhì) .(1)復(fù)習(xí)時教師應(yīng)強(qiáng)調(diào)垂線的定義即可以作垂線的制定方法用,也可以作垂線性質(zhì)用 .作判定用時寫成 :如圖 (2),因為 AOD=90 ,所以 AB CD, 這是一個角的 “數(shù)”到兩直線垂直的 “形”的判斷。作為性質(zhì)用時寫成:如圖(2),因為 AB CD,所以 AOD=90 。這是由 “形”到“數(shù)”的說理。(2)如圖 (4),直線 AB 、CD、EF 相交于點 O,CDEF,1=35,求 2 的度數(shù) .CFAADBA12CEDBlCB(4)(5)(6)鼓勵學(xué)生用不同方法求解.(3)垂線性質(zhì) 1 和性質(zhì) 2.讓學(xué)生敘述垂線的性質(zhì) ,懂得分清這兩個命
45、題的題設(shè)和結(jié)論 ,垂線性質(zhì)一說得過一點已知直線的垂線存在并且唯一的 .學(xué)生思考 :請回憶一下后體育課測跳遠(yuǎn)成績時,教師是怎樣測量的 ?如圖 (5),AB L,BC L,B 為重足 ,那么 A、 B、C 三點在同一條直線上嗎 ? 為什么 ? 點到直線的距離、兩條平行線的距離 .初中階級學(xué)習(xí)了三種距離 ,即是距離 ,就要懂得的共同點 :距離都是線段的長度 ,又要懂得區(qū)別 :兩點間的距離是連接這兩點的線段的長度 ,點到直線距離是直線外一點引已知直線的垂線段的長度 ,平行線間的距離是某條直線上的一點到另一點平行線的距離 .學(xué)生練習(xí) :如圖 (6),四邊形 ABCD,AD BC,AB CD,過 A 作
46、AE BC,過 A 作 AF CD, 垂足分別是 E、F,量出點 A 到 BC 的距離和 AB 、 CD 平行線間的距離 .第 14頁共 60頁數(shù)學(xué)教案(七年級下冊)請歸納一下與垂直有關(guān)的知識中,有哪些重要結(jié)論 ?如垂線的性質(zhì) 1、2,又如兩種直線都垂直于第三條直線 ,這兩條直線平行 ,一條直線與平行線中一條垂直 ,也與另一條垂直 3.同位角、內(nèi)錯角、同旁內(nèi)角.只要求學(xué)生從圖形中找出同位角 ,內(nèi)錯角 ,同旁內(nèi)角 .12練習(xí) :如圖 (7),找出 1、 2、 3 中哪兩個是同位角、內(nèi)錯角、同旁內(nèi)角 .c4.平行線判定與性質(zhì)3(1)怎樣判別兩條直線是否平行 .b圖( 7)(2)平行線有什么特征 ?
47、a(3)對比平行線的性質(zhì)和直線平行的條件 ,它們有什么異同 ?(4)為什么研究平面內(nèi)兩直線的位置關(guān)系總是與角聯(lián)系起來?圍繞這些問題展開討論 ,交流 .教師使學(xué)生進(jìn)一步明確 :平行線的判定也是由 “數(shù)”即角與角的關(guān)系到 “形”的判斷,而性質(zhì)則是 “形”到“數(shù)”的說理,在研究兩條直線的垂直或平行時共同點是把研究它們的位置關(guān)系轉(zhuǎn)化為研究角或角之間的關(guān)系。學(xué)生練習(xí) :填空 :如圖 (8),當(dāng) _時,ac,理由是 _;當(dāng)_時,b c,理由是 _;當(dāng) a b,b c 時,_,理由是 _.dADa1A2DbB34cC BCB(8)(9)(10)如圖 (9),AB CD, A= C,試判斷 AD 與 BC 的位置關(guān)系 ?為什么 ?教師根據(jù)學(xué)生情況
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 染色體畸變相關(guān)疾病研究
- 皰疹的中醫(yī)辨證治療
- 皮膚科中醫(yī)護(hù)理學(xué)特色
- 腰突癥及微創(chuàng)術(shù)后護(hù)理
- 有的人教學(xué)設(shè)計關(guān)鍵要素與實踐策略
- 客運包車運營實施方案
- 灘羊肉包裝設(shè)計策略
- 視神經(jīng)炎患者護(hù)理
- 正確的護(hù)理查房
- 2025年被動式超低能耗建筑在建筑節(jié)能領(lǐng)域的應(yīng)用挑戰(zhàn)與解決方案研究報告
- 形勢與政策(吉林大學(xué))智慧樹知到答案2024年吉林大學(xué)
- β內(nèi)酰胺類抗菌藥物皮膚試驗指導(dǎo)原則2024課件
- 弱電機(jī)房工程報價清單
- 口腔醫(yī)院感染預(yù)防與控制
- 電弧增材制造工藝及其應(yīng)用
- YALEBROWN強(qiáng)迫量表完全
- 醫(yī)療機(jī)構(gòu)消毒記錄表清潔消毒日檢查記錄表
- 2024年全國甲卷高考物理試卷(真題+答案)
- 廣西壯族自治區(qū)桂林市2023-2024學(xué)年七年級下學(xué)期期末考試數(shù)學(xué)試題
- 2024年農(nóng)產(chǎn)品食品質(zhì)量安全檢驗員技能及理論知識考試題庫(附含答案)
- 《建筑材料》教案
評論
0/150
提交評論