人教版八年級下冊數(shù)學教案設計:18.2.1矩形的定義與性質(zhì)_第1頁
人教版八年級下冊數(shù)學教案設計:18.2.1矩形的定義與性質(zhì)_第2頁
人教版八年級下冊數(shù)學教案設計:18.2.1矩形的定義與性質(zhì)_第3頁
人教版八年級下冊數(shù)學教案設計:18.2.1矩形的定義與性質(zhì)_第4頁
人教版八年級下冊數(shù)學教案設計:18.2.1矩形的定義與性質(zhì)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、教學目標矩形的定義與性質(zhì)教學設計1掌握矩形的定義和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系 2會初步運用矩形的定義和性質(zhì)來解決有關問題教學重點 矩形的性質(zhì)教學難點 矩形的性質(zhì)的靈活應用教具準備 能活動的平行四邊形教具、課件教學設計:一、情景導入與知識回顧:1、情景導入由學生前兩天的工業(yè)游活動引出旅游的話題,再由旅游的話題引出照 片,從而展示兩張平行四邊形框架的風景照 (下方左圖 ),觀察照片是平行 四邊形的形狀很不美觀,于是引出方方正正的矩形(下方右圖)。1、 “數(shù)學來源生 活”思想2、 啟發(fā)學生從邊、 角、對角線三個方 面回答。學生一邊 回答教師一邊通 過課件演示。(設計意圖:通過生活中的話題

2、旅游照片自然引入矩形,從實際生活中引入 數(shù)學,體現(xiàn)數(shù)學來源于生活的思想,引起學生的學習興趣。)2、知識回顧平行四邊形有哪些性質(zhì)?(學生回顧)邊:平行四邊形的對邊平行且相等。角:平行四邊形的對角相等,鄰角互補對角線:平行四邊形對角線互相平分平行四邊形邊對 邊 平 行且相等角對角相等鄰角互補對角線對角線互相平分二、新知探究:1、矩形的定義使用教具能夠活動的平行四邊形,課件演示活動平行四邊形的的變化 過程,利用四邊形的不穩(wěn)定性使得平行四邊形的形狀發(fā)生改變,當變化到一個角是直角時停止,讓學生觀察這是什么圖形?(小學學過的長方形) 引出本課題及矩形定義:有一個角是直角的平行四邊形叫做矩形 (通常也叫長方

3、形 )思考:為什么不說有兩個、三個、四個角是直角呢?(設計意圖:通過使用教具看出了由平行四邊形變成矩形的過程,看出矩形 是特殊的平行四邊形特殊在直角上,更加形象直觀。)練習:一、選擇題下列哪個圖形能夠反映四邊形、平行四邊形、矩形的關系四邊形矩形平行四邊形四邊形矩形平行四邊形四邊形 平行四邊形矩形四邊形矩形平行四邊形2、探究矩形的性質(zhì):(課件)矩形是特殊的平行四邊形(有一個角是直角的平行四邊形)所以具有 平行四邊形的所有性質(zhì),課前也作了回顧。我們是按照邊、角、對角線三 個元素去描述的。通過和學生一起逐一探究得到矩形的性質(zhì),并讓學生口 述證明。角:矩形的四個角都是直角對角線;矩形的對角線相等比一比

4、,知關系。 邊角對角線3、啟發(fā)學生用類比的方法從邊、平行四邊形對邊平行且相等對角相等鄰角互補對角線互相平分角、對角線 三個方面去探究。矩形對邊平行且相等 四個角都是直角對角線互相平分且 相等練習:1. 矩形具有而一般平行四邊形不具有的性質(zhì)是( ). a、對角線相等 b、對邊相等c、對角相等 d、對角線互相平分2、 矩形的一組鄰邊長分別是 3cm 和 4cm,則它 的對角線長是 cm.3、探究矩形中的基本圖形問:你在矩形中又發(fā)現(xiàn)了哪些基本圖形?引導學生思考問答,得出結(jié)論:1、兩對全等的等腰三角形并且它們的面積全部相等s aod=sboc=s aob=s cod, saod s boc, s ao

5、b s cod2、四個全等的直角三角形sabdsabcs bcdsadc注:矩形的問題常常是轉(zhuǎn)化成等腰三角形和直角三角形的問題來解決。 4、探究直角三角形斜邊上的中線的性質(zhì):(課件)提問:(1) 如圖,通過以上對矩形性質(zhì)和特殊三角形的探究,你能發(fā)現(xiàn)線段 ao、co、bo、do 之間的大小關系嗎?這四條線段與 ac、bd 又是什么關系呢?如果只看直角三角形 abc, bo 是什么邊上的什么線?你能說說這個結(jié)論嗎?(2) 通過和學生一起回答上面的問題得到:直角三角形斜邊上的中線的性 質(zhì): 直角三角形斜邊上的中線等于斜邊的一半。注:鼓勵學生利用多種方法進行證明練習:1、已知abc 是直角三角形,ab

6、c=900,bd 是斜邊 ac 上的中線.4、讓學生通過回 答問題,自己發(fā)現(xiàn) 直角三角形斜邊 上的中線的性質(zhì); 從多邊形中抽象(1) 若 bd=3 ,則 ac_ ;(2) 若c=30,ab5 ,則 ac_,a出三角形來研究。bd_.2.在 rtabc 中,斜邊 ac 上的中線o和高分別是 6cm 和 5cm,則 rtabc 的 面積 s=( )。adecbbc三、學以致用例 1 已知: 如圖,矩形 abcd 的兩條對角線交于點 o, ab= 4cm , aob=60,求矩形對角線的長。adobc小結(jié):矩形的問題可以轉(zhuǎn)化到直角三角形或等腰三角形來解決 變式:如圖,o 是矩形 abcd 對角線的交點, aod=1200, ae 平分 bad,求eao 的度數(shù)和oea 的度數(shù) 。例 2 如圖,矩形 abcd 中,ae 平分bad 交 bc 于點 e,ed=5cm,ec=3cm, 求矩形的周長。adbec四、課堂小結(jié):1.矩形定義:有一個角是直角的平行四邊形叫矩形2.矩形性質(zhì)矩形的對邊平行且相等矩形的四個角均為直角矩形的對角線互相平分且相等3.直角三角形的一個重要推論:直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論