直線與平面垂直的判定說課稿_第1頁
直線與平面垂直的判定說課稿_第2頁
直線與平面垂直的判定說課稿_第3頁
直線與平面垂直的判定說課稿_第4頁
直線與平面垂直的判定說課稿_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、 直線與平面垂直的判定說課稿 下面,我將分別從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)媒體設(shè)計、教學(xué)過程設(shè)計及教學(xué)評價設(shè)計六個方面對本課進行說明。 一、背景分析 1學(xué)習(xí)任務(wù)分析 本節(jié)課主要學(xué)習(xí)直線與平面垂直的定義、判定定理及其初步運用。其中,線面垂直的定義是線面垂直最基本的判定方法和性質(zhì),它是探究線面垂直判定定理的基礎(chǔ);線面垂直的判定定理充分體現(xiàn)了線線垂直與線面垂直之間的轉(zhuǎn)化,它既是后面學(xué)習(xí)面面垂直的基礎(chǔ),又是連接線線垂直和面面垂直的紐帶?。ㄈ鐖D)學(xué)好這部分內(nèi)容,對于學(xué)生建立空間觀念,實現(xiàn)從認(rèn)識平面圖形到認(rèn)識立體圖形的飛躍,是非常重要的。 本節(jié)課中,學(xué)生將按照“直觀感知操作確認(rèn)歸納總結(jié)”的認(rèn)

2、知過程展開學(xué)習(xí),對大量圖片、實例的觀察感知,概括出線面垂直的定義;對實例、模型的分析猜想、折紙實驗,發(fā)現(xiàn)線面垂直的判定定理。學(xué)生將在問題的帶動下,進行更主動的思維活動,經(jīng)歷從現(xiàn)實生活中抽象出幾何圖形和幾何問題的過程,體會轉(zhuǎn)化、歸納、類比、猜想等數(shù)學(xué)思想方法在解決問題中的作用,發(fā)展學(xué)生的合情推理能力和空間想象力,培養(yǎng)學(xué)生的質(zhì)疑思辨、創(chuàng)新的精神。 根據(jù)課程標(biāo)準(zhǔn),線面垂直判定定理的嚴(yán)格證明安排在選修系列2中進行,這樣降低了難度,符合學(xué)生的認(rèn)知規(guī)律。因而,我將本節(jié)課的教學(xué)重點確立為:操作確認(rèn)并概括出直線與平面垂直的定義和判定定理。 2學(xué)生情況分析 課前先安排學(xué)生上網(wǎng)查閱有關(guān)“直線與平面垂直”的圖片資料

3、,然后在網(wǎng)上師生進行交流,從中體現(xiàn)出學(xué)生活躍的思維、濃厚的興趣、強烈的參與意識和自主探究能力。在初中學(xué)生已經(jīng)掌握了平面內(nèi)證明線線垂直的方法,學(xué)習(xí)本課前,學(xué)生又通過直觀感知、操作確認(rèn)的方法,學(xué)習(xí)了直線、平面平行的判定定理,對空間概念建立有一定基礎(chǔ),因而,可以采用類比的方法來學(xué)習(xí)本課。 但是,學(xué)生的抽象概括能力、空間想象力還有待提高。線面垂直的定義比較抽象,平面內(nèi)看不到直線,要讓學(xué)生去體會“與平面內(nèi)所有直線垂直”就有一定困難;同時,線面垂直判定定理的發(fā)現(xiàn)具有一定的隱蔽性,學(xué)生不易想到。因而,我將本節(jié)課的教學(xué)難點確立為:操作確認(rèn)并概括出直線與平面垂直的定義和判定定理。 二、教學(xué)目標(biāo)設(shè)計 課程標(biāo)準(zhǔn)指出

4、本節(jié)課學(xué)習(xí)目標(biāo)是:通過直觀感知、操作確認(rèn),歸納出線面垂直的判定定理;能運用判定定理證明一些空間位置關(guān)系的簡單命題。 考慮到學(xué)生的接受能力和課容量,本節(jié)課只要求學(xué)生在構(gòu)建線面垂直定義的基礎(chǔ)上探究線面垂直的判定定理,并進行定理的初步運用,靈活運用定理解決相關(guān)問題將安排在下節(jié)課。故而確立本節(jié)課的教學(xué)目標(biāo)為: 1.通過對圖片、實例的觀察,抽象概括出直線與平面垂直的定義,并能正確理解直線與平面垂直的定義。 2.通過直觀感知,操作確認(rèn),歸納直線與平面垂直判定的定理,并能運用判定定理證明一些空間位置關(guān)系的簡單命題,進一步培養(yǎng)學(xué)生的空間觀念。 3.讓學(xué)生親身經(jīng)歷數(shù)學(xué)研究的過程,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興

5、趣。 三、課堂結(jié)構(gòu)設(shè)計 布魯納認(rèn)為:“在教學(xué)過程中,學(xué)生是一個積極的探究者,教師的作用是要形成一種學(xué)生能夠獨立探究的情境,幫助學(xué)生形成豐富的想象,防止過早語言化,注重直覺思維。”基于此,本課是概念、定理的新授課,設(shè)計了以學(xué)生活動為主體,培養(yǎng)學(xué)生能力為中心,提高課堂教學(xué)質(zhì)量為目標(biāo)的課堂結(jié)構(gòu)。 四、教學(xué)媒體設(shè)計 根據(jù)本節(jié)課的教學(xué)任務(wù)以及學(xué)生學(xué)習(xí)的需要,教學(xué)媒體設(shè)計如下: 1多媒體輔助教學(xué): 利用投影展示多幅圖片,使學(xué)生直觀感知線面垂直的定義。為幫助學(xué)生正確進行操作確認(rèn)并歸納出線面垂直的判定定理,在學(xué)生動手操作后利用多媒體課件進行動態(tài)演示,模擬折紙試驗,便于學(xué)生對實驗現(xiàn)象進行觀察和分析,同時利用多媒

6、體課件增加課堂教學(xué)容量。 2學(xué)生自備學(xué)具: 課前要求每個學(xué)生準(zhǔn)備一張三角形紙片、一小段鐵絲和三角板,以便學(xué)生進行實驗,有助于學(xué)生對知識的發(fā)現(xiàn)和理解。 3設(shè)計科學(xué)合理的板書: 為使學(xué)生對本節(jié)課所學(xué)習(xí)的內(nèi)容有一個整體的認(rèn)識,教學(xué)時將重要內(nèi)容進行板書。如: 五、教學(xué)過程設(shè)計 1.直線與平面垂直定義的建構(gòu) 本環(huán)節(jié)是教學(xué)的第一個重點,是后面探究活動的基礎(chǔ),分三步進行: (1)創(chuàng)設(shè)情境感知概念 展示圖片:學(xué)生收集的一組圖片和教師提供的兩張圖片。 觀察實例:學(xué)生將書打開直立于桌面,觀察書脊與桌面的位置關(guān)系。 提出思考問題:如何定義一條直線與一個平面垂直? (2)觀察歸納形成概念 學(xué)生畫圖:將旗桿與地面的位置

7、關(guān)系畫出相應(yīng)的幾何圖形。 提出問題:能否用一條直線垂直于一個平面內(nèi)的直線,來定義這條直線與這個平面垂直呢?(學(xué)生討論并交流) 動畫演示:旗桿與它在地面上影子的位置變化,重點讓學(xué)生體會直線與平面內(nèi)不過垂足的直線也垂直。 歸納直線與平面垂直的定義、介紹相關(guān)概念,并要求學(xué)生用符號語言表示。 (3)辨析討論深化概念 判斷正誤: 如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線就與這個平面垂直。 若a,b,則ab。(學(xué)生利用鐵絲和三角板進行演示,討論交流。) 這一環(huán)節(jié)是本節(jié)課的基礎(chǔ)。線面垂直定義比較抽象,若直接給出,學(xué)生只能死記硬背,這樣,不利于學(xué)生思維能力的發(fā)展。如何使學(xué)生從“線面垂直的直觀感知

8、”中抽象出“直線與平面內(nèi)所有直線垂直”是本環(huán)節(jié)的關(guān)鍵,因此,在教學(xué)中,充分發(fā)揮學(xué)生的主觀能動性,先安排學(xué)生課前收集大量圖片,多感知,然后,通過學(xué)生動手畫圖、討論交流和多媒體課件演示,使其經(jīng)歷從實際背景中抽象出幾何概念的全過程,從而形成完整和正確的概念,最后,通過辨析討論加深學(xué)生對概念的理解。這種立足于感性認(rèn)識的歸納過程,即由特殊到一般,由具體到抽象,既有助于學(xué)生對概念本質(zhì)的理解,又使學(xué)生的抽象思維得到發(fā)展,培養(yǎng)學(xué)生的幾何直觀能力。 2.直線與平面垂直的判定定理的探究 這個探究活動是本節(jié)課的關(guān)鍵所在,分三步進行: (1)分析實例猜想定理 問題在長方體ABCDA1B1C1D1中,棱BB1與底面AB

9、CD垂直,觀察BB1與底面ABCD內(nèi)直線AB、BC有怎樣的位置關(guān)系?由此你認(rèn)為保證BB1底面ABCD的條件是什么? 問題如何將一張長方形賀卡直立于桌面? 問題由上述兩個實例,你能猜想出判斷一條直線與一個平面垂直的方法嗎? 學(xué)生提出猜想: 如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。 (2)動手實驗確認(rèn)定理 折紙實驗:過ABC的頂點A翻折紙片,得到折痕AD,再將翻折后的紙片豎起放置在桌面上(BD、DC與桌面接觸),進行觀察并思考: 問題折痕AD與桌面垂直嗎?如何翻折才能使折痕AD與桌面所在的平面垂直? 問題由折痕ADBC,翻折之后垂直關(guān)系發(fā)生變化嗎?(即ADCD,ADBD

10、還成立嗎?)由此你能得到什么結(jié)論? 學(xué)生折紙可能會出現(xiàn)“垂直”與“不垂直”兩種情況,引導(dǎo)這兩類學(xué)生進行交流,分析“不垂直”的原因,從而發(fā)現(xiàn)垂直的條件折痕AD是BC邊上的高,進而引導(dǎo)學(xué)生觀察動態(tài)演示模擬試驗,根據(jù)“兩條相交直線確定一個平面”的事實和實驗中的感知進行合情推理,歸納出線面垂直的判定定理,并要求學(xué)生畫圖,用符號語言表示。 (3)質(zhì)疑反思深化定理 問題如果一條直線與平面內(nèi)的兩條平行直線都垂直,那么該直線與此平面垂直嗎? 由于兩條平行直線也確定一個平面,這個問題是學(xué)生會問到的??梢砸龑?dǎo)學(xué)生通過操作模型(三角板)來確認(rèn),消除學(xué)生心中的疑惑,進一步明確線面垂直的判定定理中的“兩條”、“相交”缺

11、一不可! 在本環(huán)節(jié)中,借助學(xué)生最熟悉的長方體模型和生活中最簡單的經(jīng)驗,引導(dǎo)學(xué)生分析,將“與平面內(nèi)所有直線垂直”逐步轉(zhuǎn)化為“與平面內(nèi)兩條相交直線垂直”,并以此為基礎(chǔ),進行合情推理,提出猜想,使學(xué)生的思維順暢,為進一步的探究做準(zhǔn)備。 由于課程標(biāo)準(zhǔn)中不要求嚴(yán)格證明線面垂直的判定定理,只要求直觀感知、操作確認(rèn),注重合情推理。因而,安排學(xué)生動手實驗,討論交流、為便于學(xué)生對實驗現(xiàn)象進行觀察和分析,自己發(fā)現(xiàn)結(jié)論,還增設(shè)了動態(tài)演示模擬試驗,讓學(xué)生更加清楚地看到“平面化”的過程。學(xué)生在已有數(shù)學(xué)知識的基礎(chǔ)上,加之以公理的支撐,便可以確認(rèn)定理。 教學(xué)中,讓學(xué)生真正體會到知識產(chǎn)生的過程,有利于發(fā)展學(xué)生的合情推理能力和

12、空間想象能力。與此同時,鼓勵學(xué)生大膽嘗試,不怕失敗,教訓(xùn)有時比經(jīng)驗更深刻,使學(xué)生在自己的實踐中感受數(shù)學(xué)探索的樂趣,獲得成功的體驗,增強學(xué)習(xí)數(shù)學(xué)的興趣。在討論交流中激發(fā)學(xué)生的積極性和創(chuàng)造性,為今后自主學(xué)習(xí)打下基礎(chǔ)。 3. 直線與平面垂直的判定定理的初步應(yīng)用 考慮到學(xué)生處于初學(xué)階段,補充了練習(xí)(1)和練習(xí)(2)做鋪墊。學(xué)生先嘗試去做并板演,師生共同評析,幫助學(xué)生明確運用定理時的具體步驟,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评?。練?xí)(3)使學(xué)生對線面垂直認(rèn)識由感性上升到理性;同時,展示了平行與垂直之間的聯(lián)系,給出判斷線面垂直的一種間接方法,為今后多角度研究問題提供思路。根據(jù)學(xué)生的實際情況,本題可機動處理。 4.總結(jié)

13、反思提高認(rèn)識 (1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與平面垂直的方法? (2)在證明直線與平面垂直時應(yīng)注意哪些問題? (3)本節(jié)課你還有哪些問題? 學(xué)生發(fā)言,互相補充,教師點評。本環(huán)節(jié)側(cè)重三點:(1)以知識結(jié)構(gòu)圖歸納出判斷直線與平面垂直的方法(如圖);(2)說明本課蘊含著轉(zhuǎn)化、類比、歸納、猜想等數(shù)學(xué)思想方法,強調(diào)“平面化”是解決立體幾何問題的一般思路;(3)鼓勵學(xué)生反思,大膽質(zhì)疑。 通過小結(jié)使本節(jié)課的知識系統(tǒng)化,使學(xué)生深刻理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,培養(yǎng)學(xué)生認(rèn)真總結(jié)的學(xué)習(xí)習(xí)慣,使學(xué)生在知識、能力、情感三個維度得到提高,并為下節(jié)的學(xué)習(xí)提供改進方向。 5.布置作業(yè)自主探究 (1)如

14、圖,點P是平行四邊形ABCD所在平面外一點,O是對角線AC與BD的交點,且PA=PC,PB=PD. 求證:PO平面ABCD (2)課本P74 練習(xí)1 (3)探究:如圖,PAO所在平面,AB是O的直徑,C是圓周上一點,則圖中有幾個直角三角形?由此你認(rèn)為三棱錐中最多有幾個直角三角形?四棱錐呢? 為作好鋪墊,補充第(1)題直接運用線面垂直判定定理。第(3)題是一道開放性題目,有助于培養(yǎng)學(xué)生的發(fā)散思維,為學(xué)有余力的學(xué)生安排的,這樣,使不同程度的學(xué)生都有所獲,鞏固新知識并培養(yǎng)應(yīng)用意識。第(3)題還為下節(jié)課靈活運用線面垂直判定定理埋下伏筆。 六、教學(xué)評價設(shè)計 根據(jù)本節(jié)課的特點,我從以下三個方面進行教學(xué)評價: 1.關(guān)注學(xué)生在整個探究過程中的表現(xiàn),包括學(xué)生的投入程度、思維水平的發(fā)展.具體體現(xiàn)在: (1)線面垂直定義的建構(gòu)中,著重觀察學(xué)生思維發(fā)展,通過動態(tài)演示能否順利得到結(jié)論,若出現(xiàn)“卡殼”現(xiàn)象,教師可再多舉實例,放慢節(jié)奏。 (2)在線面垂直的判定定理的探究中,著重關(guān)注學(xué)生的合情推理,通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,進行恰當(dāng)引導(dǎo)。對于個別有困難的學(xué)生,教師及時幫助與鼓勵,調(diào)動學(xué)生的積極性。若出現(xiàn)意想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論