




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、 1.1.移項,使左邊只含未知項,右邊只含常數(shù)項移項,使左邊只含未知項,右邊只含常數(shù)項. . 2.2.把二次項系數(shù)化為把二次項系數(shù)化為1 1:兩邊同除以二次項系數(shù):兩邊同除以二次項系數(shù). . 3.3.配方:兩邊都加上一次項系數(shù)一半的平方配方:兩邊都加上一次項系數(shù)一半的平方. . 用配方法解一元二次方程用配方法解一元二次方程: : 2x 2x2 2+4x+1=0+4x+1=0 配方配方的步驟:的步驟: . 2 22 , 2 22 21 xx 用配方法解一般形式的一元二次方程用配方法解一般形式的一元二次方程 axax2 2+bx+c=0 +bx+c=0 (a0)(a0) 解解: :把方程兩邊都除以
2、把方程兩邊都除以 a,a,得得x x2 2 + x+ = 0 + x+ = 0 解得解得 x= - x= - 當當b b2 2-4ac0-4ac0時時, x + =, x + = 4a4a2 20 0 即即 ( x + )( x + )2 2 = = 移項,得移項,得 x x2 2 + x= - + x= - 即即 x=x= 這個結果就是一元二次方程的求根公式這個結果就是一元二次方程的求根公式. . 配方,得配方,得 x x2 2 + x+( ) + x+( )2 2 =- +( ) =- +( )2 2 例例1.用公式法解方程用公式法解方程2x2+5x-3=0 解解: a=2, b=5, c
3、= -3, b2-4ac=52-42(-3)=49 1、把方程化成一般形式。、把方程化成一般形式。 并寫出并寫出a,b,c的值。的值。 x = = = 即即 x1= - 3 , 用公式法解一元二次方用公式法解一元二次方 程的一般步驟:程的一般步驟: 求根公式求根公式 : X= 4、寫出方程的解:、寫出方程的解: x1=?, x2=? 3、代入、代入求根公式求根公式 : X= (a0, b2-4ac0) (a0, b2-4ac0) x2= 2、求出、求出b2-4ac的值。的值。 填空:用公式法解方程 3x2+5x-2=0 解:a=a= ,b=b= ,c =c = . . b b2 2-4ac=-
4、4ac= = = . . x= x= = = . . = = . . 即 x x1 1 = = , x, x2 2 = = . . 3 35 5 -2-2 5 52 2-4-43 3(-2)(-2)4949 -2-2 求根公式求根公式 : X= 1.1.用公式法解下列方程:用公式法解下列方程: (1) x(1) x2 2 +2x =5 +2x =5 (a0, b2-4ac0) 61 2 242 0242044 5, 2, 1 052: 2 2 x acb cba xx 解 61, 61 21 xx (2 2)x x2 2 +3 = 2 x +3 = 2 x 解:移項,得 x2 2 -2 x+3
5、 = 0 -2 x+3 = 0 a=1a=1,b=-2 b=-2 ,c=3c=3 b b2 2-4ac=(-2 -4ac=(-2 ) )2 2-4-41 13=03=0 x=x= x x1 1 = x = x2 2 = = = = = 當當 時,一時,一 元二次方程有兩個相等元二次方程有兩個相等 的實數(shù)根。的實數(shù)根。 b2-4ac=0 (1)(1)4x4x2 2-6x=0-6x=0 0360364 0, 6, 4 : 2 acb cba 解 .0, 2 3 21 xx 8 66 42 366 x 1.用公式法解下列方程:用公式法解下列方程: 當當 時,一時,一 元二次方程有兩個不相元二次方程有
6、兩個不相 等的實數(shù)根。等的實數(shù)根。 b2-4ac0 2.用公式法解下列方程:用公式法解下列方程: (3)(3)4x4x2 2-3x+2=0-3x+2=0 0233294 2, 3, 4 : 2 acb cba 解 .方程沒有實數(shù)根 當當 時,一元時,一元 二次方程沒有實數(shù)根。二次方程沒有實數(shù)根。 b2-4ac0 當當 時,一時,一 元二次方程有兩個相等元二次方程有兩個相等 的實數(shù)根。的實數(shù)根。 當當 時,一時,一 元二次方程有兩個相等元二次方程有兩個相等 的實數(shù)根。的實數(shù)根。 b2-4ac=0 當當 時,一元時,一元 二次方程沒有實數(shù)根。二次方程沒有實數(shù)根。 b2-4ac0 b2-4ac0 一
7、元二次方程根的情況一元二次方程根的情況 用公式法解一元二次方程的一般步驟:用公式法解一元二次方程的一般步驟: 2 4 2 bbac x a 3、代入求根公式、代入求根公式 : 2、求出、求出 的值,的值, 2 4bac 1、把方程化成一般形式,并寫出、把方程化成一般形式,并寫出 的值。的值。a b、 c c 4、寫出方程的解:、寫出方程的解: 12 xx、 特別注意特別注意:當當 時時,方程無實數(shù)解方程無實數(shù)解; 2 40bac .,04 2 根一元二次方程才有實數(shù)時當 acb 3、用公式法解方程、用公式法解方程: x2 2 - 2 x+2= 0. 1、方程、方程3 x x2 2 +1=2 x
8、 +1=2 x中,中, b2-4ac= . 2、若關于、若關于x的方程的方程x2-2nx+3n+4=0 有兩個相等的實數(shù)根,則有兩個相等的實數(shù)根,則n= . 動手試一試吧!動手試一試吧! 0 -1或或4 0884 2,22, 1 : 2 acb cba 解 . 2 21 xx 2 022 2 0)22( x 解:去括號,化簡為一般式:解:去括號,化簡為一般式: 4.解方程:解方程: 2136xx 2 3780 xx 這里這里3a 、 b=-7、b=-7、 c=8c=8 22 474 3 8 4996470 bac - - () 方程沒有實數(shù)解。方程沒有實數(shù)解。 5.用公式法解下列方程:用公式法
9、解下列方程: 01 2 1 2 3 2 xx 0252414 2, 1, 3 023: 2 acb cba xx解 . 3 2 , 1 21 xx 6 51 32 251 x 1、 m取什么值時,方程取什么值時,方程 x2+(2m+1)x+m2-4=0 有兩個相等的實數(shù)解有兩個相等的實數(shù)解 思考題思考題 174164144 )4(4)12(4 ,4,12,1: 22 222 2 mmmm mmacb mcmba解 . 4 17 ,0174mm得由 . , 04, 4 17 2 實數(shù)解則原方程有兩個相等的 時當acbm 求根公式求根公式 : X= 一、由配方法解一般的一元二一、由配方法解一般的一
10、元二 次方程次方程 axax2 2+bx+c=0+bx+c=0 (a0)(a0) 若若 b b2 2-4ac0-4ac0得得 這是收獲的這是收獲的 時刻,讓我時刻,讓我 們共享學習們共享學習 的成果的成果 這是收獲的這是收獲的 時刻,讓我時刻,讓我 們共享學習們共享學習 的成果的成果 二、用公式法解一元二次方二、用公式法解一元二次方 程的一般步驟:程的一般步驟: 1、把方程化成一般形式。、把方程化成一般形式。 并寫并寫 出出a,b,c的值。的值。 2、求出、求出b2-4ac的值。的值。 3、代入、代入求根公式求根公式 : X= (a0, b2-4ac0) 4、寫出方程的解、寫出方程的解: x1=?, x2=? 這是收獲的這是收獲的 時刻,讓我時刻,讓我 們共享學習們共享學習 的成果的成果 四、計算一定要四、計算一定要細心細心,尤其是,尤其是 計算計算b b2 2-4ac-4ac的值和代入公式時,的值和代入公式時, 符號符號不要弄錯。不要弄錯。 三三、當、當 b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- ktv水果配送合同范本
- 人力轉(zhuǎn)讓合同范本
- 倉庫維修維護合同范本
- 出國合同范本ps
- 樂器進貨合同范本
- 冰箱購買合同范例
- 單位清單合同范本
- 勞務服務發(fā)票合同范本
- 公司運貨合同范本
- 協(xié)力商合同范本
- 2023年山東鋁業(yè)職業(yè)學院單招綜合素質(zhì)題庫及答案解析
- 7、核生化防護教案
- 海上鋼琴師英語PPT
- GB/T 2007.1-1987散裝礦產(chǎn)品取樣、制樣通則手工取樣方法
- GB/T 16839.1-2018熱電偶第1部分:電動勢規(guī)范和允差
- GA/T 910-2010信息安全技術內(nèi)網(wǎng)主機監(jiān)測產(chǎn)品安全技術要求
- 教科版五年級科學下冊【全冊全套】課件
- 大數(shù)據(jù)專業(yè)實習報告范文共5篇
- 出口退稅培訓課件外貿(mào)企業(yè)出口退稅
- 城市社會學(2015)課件
- 蛋白表達及純化課件
評論
0/150
提交評論