大跨度橋梁的外文翻譯_第1頁
大跨度橋梁的外文翻譯_第2頁
大跨度橋梁的外文翻譯_第3頁
大跨度橋梁的外文翻譯_第4頁
大跨度橋梁的外文翻譯_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、本科畢業(yè)設(shè)計(jì)外文翻譯大跨度橋梁1 懸索橋懸索橋是現(xiàn)行的跨徑超過600m大橋的唯一解決方案,而且對(duì)跨徑在300m以上的橋梁它也是被認(rèn)為是一種很有競爭力的方案?,F(xiàn)在世界上最大跨徑的橋梁是紐約的威拉查諾(verrazano)海峽大橋,另一個(gè)是英國的塞溫(savern)大橋。懸索橋的組成部分有:柔性,主塔,錨碇,吊索(掛索),橋面板和加勁桁架。主纜是有一組平行的單根高強(qiáng)鋼絲在現(xiàn)場扭在一起并綁扎成型的鋼絲束組成的。每根鋼絲都是 經(jīng)過渡鋅處理的,并且整個(gè)用保護(hù)層覆蓋著。所用的鋼絲應(yīng)該是冷拔鋼絲而不是經(jīng)過熱處理的各種鋼絲。在進(jìn)行主塔設(shè)計(jì)時(shí)應(yīng)該特別注意其在美學(xué)上的要求。主塔很高而且具有足夠的柔性,使其每一座塔

2、頂都可認(rèn)為是與主纜鉸接。主纜的兩端很安全的錨固在非常堅(jiān)實(shí)的錨碇上。吊索把橋面板上的荷載傳遞到主主纜上。吊索也是有高強(qiáng)鋼絲制成的而且通常是豎直的。橋面板通常是有加勁鋼板,肋或槽型板,橫梁制成的異性結(jié)構(gòu)。提供一些加勁梁連接在其主塔之間,能夠起到控制空氣動(dòng)力運(yùn)動(dòng)并限制橋面板局部傾角變化。如果加勁系統(tǒng)不適當(dāng),由于風(fēng)引起的豎向振動(dòng)也許會(huì)導(dǎo)致結(jié)構(gòu)傾斜,就像塔科瑪(tacoma)海峽大橋的悲劇性的破壞所表明的那樣。 邊跨與主跨的跨徑比的變化范圍是0.170.50。 在現(xiàn)有的采用加勁梁的橋梁上, 當(dāng)跨徑高大 1000米時(shí)跨徑與橋梁的建筑高度之比為85與100之間。現(xiàn)有的橋梁的跨徑與橋面板寬度之比約為2056。

3、橋梁結(jié)構(gòu)的空氣動(dòng)力穩(wěn)定性必須得通過對(duì)其模型的風(fēng)洞試驗(yàn)及細(xì)部分析進(jìn)行全面的研究。2 斜拉橋體系 在過去的十年間,斜拉橋得以廣泛的應(yīng)用,尤其實(shí)在歐洲,而在世界其它地區(qū),應(yīng)用相對(duì)少一些。在現(xiàn)代橋梁工程中,斜拉橋體系的重新興旺起來是由于歐洲(主要是德國)的橋梁工程師有一種趨勢,即從因?yàn)閼?zhàn)爭而短缺的材料上獲得最佳的結(jié)構(gòu)性能。斜拉橋是有按各向異性橋面板和由吊索支撐的連續(xù)梁構(gòu)成的體系建造起來的,這些吊索是一些穿過或固定的位于主橋墩的索塔頂上的傾斜主纜。用主纜來支撐橋跨并不是一種新思想,在很早以前就有大量此類結(jié)構(gòu)的的記載。不幸的是這一體系只有很少成功的例子,這是由于人們對(duì)靜力學(xué)的原理沒有完全弄明白,并且還沒有

4、構(gòu)成傾斜支撐或吊索的適當(dāng)?shù)牟牧?,例如主纜和鋼鏈等。這種吊索在它們能夠按計(jì)劃承擔(dān)拉力之前不能完全被拉緊,而應(yīng)處于允許橋面板產(chǎn)生較大變形的松弛狀態(tài)。斜拉體系的廣泛的成功的應(yīng)用只在近年來,隨著高強(qiáng)鋼,各種異性橋面板的引入、焊接技術(shù)的發(fā)展和結(jié)構(gòu)分析方法的進(jìn)步才得以實(shí)現(xiàn)。電子計(jì)算機(jī)的發(fā)展和應(yīng)用,導(dǎo)致了解決高次超靜定體系的精確值及它們的三維空間性能的精確靜力分析的新的無實(shí)際限制的可能性?,F(xiàn)有的斜拉橋提供了許多關(guān)于設(shè)計(jì)、制造、安裝和維修的有用的數(shù)據(jù)。隨著這些橋梁的建造,許多工程中遇到的基本問題已表明的到了成功的解決。然而這些重要的數(shù)據(jù)很顯然在這以前決沒有被系統(tǒng)的揭示出來。斜吊索的應(yīng)用對(duì)大型橋梁建造帶來了一個(gè)

5、新刺激。斜拉橋的重要性迅速增加起來,并且在僅三十年間這種橋梁類型就變的這樣成功,已使其在古典橋梁體系中取得了它應(yīng)有的地位。如果我們注意到這種橋梁建造帶來如此徹底的變革的發(fā)展是怎樣發(fā)生的話,我們都會(huì)感興趣的,因?yàn)檫@一發(fā)展事實(shí)上并沒有什么任何新發(fā)現(xiàn)。這一體系的開始也許可以追溯到人們開始認(rèn)識(shí)到通過三角形連接在一起能夠構(gòu)成剛性結(jié)構(gòu)的時(shí)代。盡管大多數(shù)這種設(shè)計(jì)是基于結(jié)構(gòu)堅(jiān)固的原理和假定的,但斜拉加勁梁還是遭受各種各樣的不幸事故,而最終令人遺憾的導(dǎo)致了這一體系被放棄。盡管這樣,這一體系并不是完全不適應(yīng),只是問題的解決被不幸的應(yīng)用錯(cuò)誤的方式去嘗試。然而,斜拉體系的復(fù)興只是在近十年來才最終獲得成功。現(xiàn)代的斜拉橋

6、提出了加勁梁、橫向及縱向聯(lián)系梁、各項(xiàng)異性橋面板和支撐部分(例如處于受壓狀態(tài)的索塔及受拉狀態(tài)的斜吊索)組成的三維空間體系。象這種空間三維結(jié)構(gòu)的重要特征是橫向結(jié)構(gòu)全部參與主要縱向結(jié)構(gòu)的工作狀態(tài)。這就意味著結(jié)構(gòu)的慣性矩大大增加,這使的橋的建筑高度可以減少,并且使用鋼材是最經(jīng)濟(jì)的。大跨度橋梁經(jīng)常是連續(xù)梁形式或懸臂梁形式的預(yù)應(yīng)力混凝土橋梁。以前許多的施工方法已發(fā)展為連續(xù)梁橋的施工方法。如果模板和地面之間的距離較小并且土質(zhì)堅(jiān)硬,橋梁的上部結(jié)構(gòu)可以使用支架施工方法。不過這種施工方法已經(jīng)越來越過時(shí)了。目前,自由懸臂法和移動(dòng)模架法的應(yīng)用漸廣并能節(jié)省時(shí)間和提高安全性。移動(dòng)模架法是利用固定在鋼制臺(tái)架上的移動(dòng)系統(tǒng)而形

7、成,這種系統(tǒng)能夠達(dá)到一跨長并支承在一端支承在橋墩上并借助于第二根鋼導(dǎo)梁逐跨移動(dòng)的鋼梁上。一種經(jīng)濟(jì)的施工方法是被廣泛知曉的由baur-leonhard團(tuán)隊(duì)所發(fā)展的使用廣泛的頂推法。整個(gè)的連續(xù)梁被劃分成10-30米長度的節(jié)段,這種劃分主要依據(jù)跨徑和能夠利用的施工時(shí)間。每個(gè)節(jié)段在橋臺(tái)后面的鋼模上能夠快速澆注,鋼??梢灾苻D(zhuǎn)使用而澆注所有的節(jié)段。這樣設(shè)計(jì)模板是為了能夠橫向移動(dòng)或在鉸上轉(zhuǎn)動(dòng),以便在混凝土充分硬化后脫模。在第一節(jié)段的頂端安裝上一個(gè)由輕型桁架組成的鋼導(dǎo)梁,以實(shí)現(xiàn)第一節(jié)段以后的節(jié)段順利架設(shè)而防止在施工出現(xiàn)過大的懸臂部分。第二節(jié)段及以后的節(jié)段可以直接在第一節(jié)段的硬化面上澆注并在施工過程中將節(jié)段連接

8、起來。頂推是通過支承在橋臺(tái)上的液壓千斤頂實(shí)現(xiàn)的,由于聚四氟乙烯的滑塊的摩擦系數(shù)只有0.02,低效能的千斤頂就足夠完成長度甚至達(dá)數(shù)百米的橋梁的頂推。這種方法可以應(yīng)用在長度在120米左右的直線橋梁或曲線橋梁上。自由懸臂法是由法國的dyckerhoff和willmann所創(chuàng)始。這種施工方法中,橋梁的上部結(jié)構(gòu)是通過節(jié)段長度基本在3.5米的懸臂機(jī)上施工,懸臂機(jī)的費(fèi)用相對(duì)比較低并且固定在橋梁承重結(jié)構(gòu)上,由于它的重復(fù)利用性使它能在長橋上使用。由于施工速度的加快和時(shí)間的節(jié)省使得這種施工方法的費(fèi)用比較低從而避免了使用臺(tái)架施工,自由懸臂法比較適用于橋墩較高并且懸臂能伸到跨徑中部的橋梁上。另一種施工方法是整體沉箱法

9、。沉箱是一種底邊有刃腳的大型圓筒,其刃腳可以切入水底。當(dāng)壓縮空氣進(jìn)入沉箱內(nèi)部時(shí)水就會(huì)被排出。沉箱的利用必須嚴(yán)加注意。首先,工人們只能在這種壓縮空氣的空間里呆很短的時(shí)間;另一方面,如果工人們從沉箱進(jìn)入正常的大氣壓條件下過于迅速,他們將比較容易患上潛水病(也被稱作沉箱?。@在能使人致殘的甚至致命的環(huán)境中由于血液中氧氣過多所引起的一種病。當(dāng)st.louis市的密西西比河eads上的橋在1867-1874年施工時(shí),由于人們對(duì)在壓縮空氣中工作的危險(xiǎn)性認(rèn)識(shí)不足,最后由于患潛水病而導(dǎo)致14人死亡。當(dāng)在橋墩上有外力作用時(shí),基樁經(jīng)常需要嵌入基巖,也就是說它們的下部一直延伸到基巖。這種方法曾經(jīng)用來建造位于強(qiáng)風(fēng)和

10、地震區(qū)域的舊金山金門大橋的橋墩。鉆孔是在水下由深水潛水員進(jìn)行的。在不能到達(dá)基巖的地方,樁通常被打進(jìn)河床。今天,在施工的基樁基本上是預(yù)應(yīng)力混凝土結(jié)構(gòu)。在建造紐約哈德遜河上的泰平.吉橋時(shí)所采用的一種巧妙技術(shù)是將一個(gè)空心混凝土箱置于橋樁層上,當(dāng)它里面的水被抽干時(shí),它的浮力足夠支承橋梁重力的一大部分。每一種類型的橋梁實(shí)際上代表了特殊的問題。許多桁架橋的施工是先將橋上桁架運(yùn)到已施工完畢的基樁位置,然后在利用千斤頂或起重機(jī)架設(shè)到適當(dāng)位置。拱橋是在腳手架或臨時(shí)腳手架上施工的,這種方法通常用于預(yù)應(yīng)力混凝土拱橋。然而對(duì)鋼拱橋來說已發(fā)展了一種技術(shù),用這種技術(shù)將已裝好的部分借助起支承作用的主纜控制就位(鋼拱在安裝過

11、程中還沒有合攏前,是兩個(gè)懸臂,需要用主纜拉住兩個(gè)懸臂以免傾倒)。當(dāng)主纜中的拉力增加時(shí),起重機(jī)就沿著拱橋的頂部移動(dòng)以架設(shè)新的鋼拱。對(duì)懸索橋來說,需要首先施工基礎(chǔ)和索塔。這時(shí)主纜從錨碇(一個(gè)固定主纜的大混凝土塊)穿過直至索塔并且通過另一索塔而錨固在錨碇上,然后從卷線盤上放松主纜的輪子沿著主纜運(yùn)動(dòng),當(dāng)卷線盤到達(dá)另一面時(shí),另一根鋼絲又裝進(jìn)卷線盤并最終到達(dá)它的原位置。當(dāng)所有的主纜被放在固定的位置后,另一臺(tái)機(jī)器沿著主纜移動(dòng)并對(duì)其進(jìn)行張拉錨固。當(dāng)主纜施工完畢時(shí),逐漸開始在支架上從兩端向中間施工。在橋梁下部結(jié)構(gòu)和基礎(chǔ)設(shè)計(jì)中要考慮的荷載包括:從上部結(jié)構(gòu)傳下來的荷載和直接作用于下部結(jié)構(gòu)的基礎(chǔ)的荷載。aashto荷

12、載。 aashto規(guī)范第三部分總結(jié)了橋梁設(shè)計(jì)(上、下部結(jié)構(gòu))要考慮的荷載和作用力。主要有:恒載、活載、活載沖擊力或動(dòng)力作用、風(fēng)荷載以及其他荷載如縱向力、離心力、溫度力、土壓力、浮力、收縮及徐變、拱肋縮短、安裝應(yīng)力、冰及水流壓力、沖撞力及地震應(yīng)力。除了這些通常能夠量化大的典型荷載外,aashto同樣認(rèn)識(shí)到諸如活動(dòng)支座處產(chǎn)生的摩擦以及由于橋梁的沉降差而產(chǎn)生的應(yīng)力等間接荷載效應(yīng)。出處:安瑞克大跨徑橋梁結(jié)構(gòu)形式j(luò)建筑實(shí)錄(美),2010,3742large span bridge1. suspension bridgethe suspension bridge is currently the onl

13、y solution in excess of 600 m, and is regarded as competitive for down to 300. the worlds longest bridge at present is the verrazano narrows bridge in new york. another modern example is the severn bridge in england. the components of a suspension bridge are: (a) flexible cables, (b) towers, (c) anc

14、horages, (d) suspenders, (e) deck and ,(f) stiffening trusses. the cable normally consists of parallel wires of high tensile steel individually spun at site and bound into one unit .each wire is galvanized and the cable is cover with a protective coating. the wire for the cable should be cold-drawn

15、and not of the heat-treated variety. special attention should be paid to aesthetics in the design of the rowers. the tower is high and is flexible enough to permit their analysis as hinged at both ends. the cable is anchored securely anchored to very solid anchorage blocks at both ends. the suspende

16、rs transfer the load form the deck to the cable. they are made up of high tensile wires and are normally vertical. the deck is usually orthotropic with stiffened steel plate, ribs or troughs,floor beam, etc. stiffening trusses, pinned at the towers, are providing. the stiffening system serves to con

17、trol aerodynamic movements and to limit the local angle changes in the deck. if the stiffening system is inadequate, torsional oscillations due to wind might result in the collapse of the structure, as illustrated in the tragic failure in 1940 of the first tacoma narrows bridge.the side span to main

18、 span ratio varies from 0.17 to 0.50 .the span to depth ratio for the stiffening truss in existing bridge lies between 85 and 100 for spans up to 1,000m and rises rather steeply to 177. the ratio of span to width of deck for existing bridges ranges from 20 to 56. the aerodynamic stability will have

19、be to be investigated thoroughly by detailed analysis as well as wind tunnel tests on models.2. the cable-stayed bridgeduring the past decade cable-stayed bridges have found wide application, sespecially in western europe, and to a lesser extent in other parts of the world.the renewal of the cable-s

20、tayed system in modern bridge engineering was due to the tendency of bridge engineering in europe, primarily germany, to obtain optimum structural performance from material which was in short supply-during the post-war years.cable-stayed bridges are constructed along a structural system which compri

21、ses an orthotropic deck and continuous girders which are supported by stays, i.e. inclined cables passing over or attached to towers located at the main piers. the idea of using cables to support bridge span bridge span is by no means new, and a number of examples of this type of construction were r

22、ecorded a long time ago. unfortunately the system in general met with little success, due to the fact that the statics were not fully understood and that unsuitable materials such as bars and chains were used to form the inclined supports or stays. stays made in this manner could not be fully tensio

23、ned and in a slack condition allowed large deformations of the deck before they could participate in taking the tensile loads for which they were intended.wide and successful application of cable-stayed systems was realized only recently, with the introduction of high-strength steels, orthotropic de

24、cks, development of welding techniques and progress in structural analysis. the development and application of electronic computers opened up new and practically unlimited possibilities for exact solution of these highly statically indeterminate systems and for precise stoical analysis of their thre

25、e-dimensional performance.existing cable-stayed bridges provide useful data regarding design, fabrication, erection and maintenance of the mew system. with the construction of these bridges many basic problems encountered in their engineering are shown to have been successfully solved. however, thes

26、e important data have apparently never before been systematically presented.the application of inclined cable gave a new stimulus to construction of large bridges. the importance of cable-stayed bridges increased rapidly and within only one decade they have become so successful that they have taken

27、their rightful place among classical bridge system. it is interesting to note now how this development which has so revolutionized bridge construction, but which in fact is no new discovery, came about.the beginning of this system, probably, may be traced back to the time when it was realized that r

28、igid structures could be formed by joining triangles together. although most of these earlier designs were based on sound principles and assumptions, the girder stiffened by inclined cables suffered various misfortunes which regrettably resulted in abandonment of the system. nevertheless, the system

29、 in itself was not at all unsuitable. the solution of the problem had unfortunately been attempted in the wrong way.the renaissance of the cable-stayed, however, was finally successfully achieved only during the last decade. modern cable-stayed present a three-dimensional system consisting of stiffe

30、ning girders, transverse and longitudinal bracings, orthotropic-type deck and supporting parts such as towers in compression and inclined cables in tension. the important characteristics of such a three-dimensional structure is the full participation of the transverse construction in the work of the

31、 main longitudinal structure. this means a considerable increase in the moment of inertia of the construction which permits a reduction in the depth of the girders and economy in steel.long span concrete bridges are usually of post-tensioned concrete and constructed either as conditions beams types

32、or as free versatile structures. many methods have been developed for continuous deck construction. if the clearance between the ground and bottom of the deck is small and the soil is firm, the superstructure can be built on staging. this method is becoming obsolete. currently, free-cantilever and m

33、ovable scaffold systems are increasingly used to save time and improve safety.the movable scaffold system employs movable forms stiffened by steel frames. these forms extend one span length and are supported by steel girders which rest on a pier at one end and can be moved from span to span on a sec

34、ond set of auxiliary steel girders.an economical construction technique known as incremental push-launching method is developed by baur-leonhard team. the total continuous deck is subdivided longitudinally into segments of 10 to 30 m length depending on the length of spans and the time available for

35、 construction. each of these segments is constructed immediately behind the abutment of the bridge in steel framed forms, which remain in the same place for concreting all segments .the forms are so designed as to be capable of being moved transversely or rotated on hinges to facilitate easy strippi

36、ng after sufficient hardening of concrete. at the head of the first segment, a steel nose consisting of a light truss is attached to facilitate reaching of the first and subsequent piers without including a too large can yielder moment during construction . the second and the following segments are

37、concreted directly on the face of the hardened portion and the longitudinal reinforcement can continue across the construction joint . the pushing is achieved by hydraulic jacks which act against the abutment .since the coefficient of friction of teflon sliding bearings is only about 2 percent, low

38、capacity hydraulic jacks would suffice to move the bridge even over long lengths of several hundred metres . this method can be used for straight and continuously curved bridges up to a span of about 120 m . the free-cantilever system was pioneered by dyckerhoff and willmann in germany .in this syst

39、em , the superstructure is erected by means of cantilever truck in sections generally of 3.5 m .the cantilever truck ,whose cost is relatively small and which is attached firmly to permanent construction , emits by repeated use the construction of large bridges . the avoidance of scaffold from below

40、, the speed of work and the saving in labor cost result in the construction being very economical. the free-cantilever system is ideally suited for launched girders with a large depth above the pier cantilever system is ideally suited for launched girders with a large depth above the pier cantilever

41、ing to the middle of the span.another technique is the use of the pneumatic caisson .the caisson is a huge cylinder with a bottom edge that can cut into the water bed. when compressed is pumped into it ,the water is forced out .caissons must be used with extreme care .for one thing, workers can only

42、 stay in the compression chamber for short periods of time .for another , if they come up to normal atmospheric pressure too rapidly ,they are subject to the bends ,or caisson disease as it is also called , which is a crippling or even fatal condition caused by excess nitrogen in the blood .when the

43、 eads bridge across the mississippi river at st.louis was under construction between 1867and 1874 , at a time when the danger of working in compressed air was not fully understood ,fourteen deaths was caused by the bends .when extra strength is necessary in the piers, they sometimes keyed into the b

44、edrock-that is ,they are extended down into the bedrock .this method was used to build the piers for the golden gate bridge in san francisco ,which is subject to strong tidies and high winds ,and is located in an earthquake zone .the drilling was carried out under water by deep-sea divers .where bed

45、rock cannot be reached ,piles are driven into the water bed .today ,the piles in construction are usually made of prestressed concrete beams .one ingenious technique ,used for the tappan zee bridge across the hudson river in new york ,is to rest a hollow concrete box on top of a layer of piles .when

46、 the box is pumped dry ,it becomes buoyant enough to support a large proportion of the weight of the bridge .each type of bridge indeed each individual bridge presents special construction problems. with some truss bridges , the span is floated into position after the piers have been erected and the

47、n raised into place by means of jacks or cranes .arch bridges can be constructed over a false work ,or temporary scaffolding. this method is usually employed with reinforced concrete arch bridges .with steel arches ,however ,a technique has been developed whereby the finished sections are held in place by wires that supply a cantilever support .cranes move along the top of the arch to place new sections of steel while the tension in the cables increases . with suspension bridges ,the foundations and the towers are built first .the

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論