SAF生物反應器對污水處理沖擊的載荷作用外文翻譯_第1頁
SAF生物反應器對污水處理沖擊的載荷作用外文翻譯_第2頁
SAF生物反應器對污水處理沖擊的載荷作用外文翻譯_第3頁
SAF生物反應器對污水處理沖擊的載荷作用外文翻譯_第4頁
SAF生物反應器對污水處理沖擊的載荷作用外文翻譯_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 saf生物反應器對污水處理沖擊的載荷作用本研究比較了有機和水力性能對沖擊負荷的影響,淹沒式濾池(safs)帶上羊毛,作為一種新型的媒介和媒介方面的kaldnes環(huán)總有機碳(toc),懸浮固體(ss)和氨的去除。safs實現(xiàn)超過95%的toc去除率,平均為99.8%的ss去除效率,氨氮去除率100%,即使在受到沖擊載荷。氨氮的去除也比其他參數(shù)更敏感,這是歸因于硝化細菌的生長緩慢,這是競爭對手的空間差與基板。帶上羊毛有能力克服液壓沖擊比saf與kaldnes,歸因于更好的過濾性能,然而,無論怎樣表現(xiàn)出在短期和長期的沖擊加載條件下正常運行。倍頻的有機負荷,反應器的反應不同,迅速應對沖擊,但不穩(wěn)定。

2、長期的有機負荷沖擊造成了更大的干擾,直到有足夠的量增長到補償,這表明傳質比生長動力學不重要。關鍵詞:淹沒式濾池 新型羊毛媒體 流體力學 停留時間分布 生物量 廢水處理1、簡介 對污水處理排放標準更加嚴格的控制系統(tǒng)已導致比傳統(tǒng)的生物處理過程更復雜的解決方案。固定發(fā)展的生物反應器保證了顯著的進步的知識與這種類型的處理中的應用。相比傳統(tǒng)的單位,固定膜生物反應器進行較高的有機負荷率由于更有效的生物量導致更高的細胞停留時間在反應區(qū),生物反應器的穩(wěn)態(tài)性能與他們的生物量濃度。潛在的有害環(huán)境的變化,由于污水廢物變性質往往造成沖擊負荷。因此,沖擊器的穩(wěn)定性是生物處理系統(tǒng)的最重要的設計方面。進水濃度的突然變化,或

3、產生有機負荷沖擊,能夠最終不穩(wěn)定的處理性能系統(tǒng)。性能劣化的程度取決于微生物的持續(xù)時間和沖擊和適應性的速率。在有機沖擊限制整體反應的主要因素,效率似乎是生物動力學。高濃度生物量的影響在好氧反應器通常提高其穩(wěn)定而不是提高cod去除。相反,在液壓沖擊的底物傳質的速率沖擊載荷發(fā)生在這兩種方式,無論是作為一個短期的,短暫的,只能持續(xù)幾小時,或作為一個長期的在反轉回原始的數(shù)天到數(shù)周的變化操作條件。在短期沖擊,惡化的程度變化將取決于你的持續(xù)時間和微生物的休克幅度和適應性速率。研究已經證明,生物反應器可以處理短期和長期的沖擊負荷,有時甚至容忍三有機負荷率(olr)。長期的沖擊會導致新的“穩(wěn)定狀態(tài)”是對原有的操

4、作條件相同的從toc去除率和其他參數(shù)。時間達到穩(wěn)定狀態(tài)與生物質的濃度成正比,即高濃度生物量在反應器的設計,增加其穩(wěn)定性??紤]到高固體停留時間增長緩慢生物量和高濃度生物量的能力,saf在在這項工作中,對裝滿了羊毛的saf沖擊載荷進行了研究。2 實驗2.1 媒介 實驗研究了兩種類型的媒體:羊毛和kaldnes。羊毛纖維直徑20um,由工業(yè)堿精練的標準方法將羊毛除去羊毛脂。這是最常見的高檔羊毛用于紡織品和地毯。kaldnes是一個工業(yè)聚乙烯基,直徑9mm,長度7.5mm,比表面面積500m2m3,密度0.95克/立方厘米,空隙率75%。2.2 安全設計與施工兩個相同規(guī)模的safs實驗室進行了這項工作

5、,在部門車間。他們被設計操作來模擬一個縮小的試點單位的版本。制備出的濾波器(140毫米內徑)聚丙烯柱。每個反應器的總高度610mm和過濾器的空床液體的體積為6.93 l,一個擠滿了羊毛的saf與kaldnes。以上兩種反應器的一個網格過濾面積高380mm,這意味著,該濾波器的70%卷裝與媒介。safs被通過蠕動泵。入口位于下方的管道直徑為15mm,和網格130mm以上的底部支撐,媒介和分離濾波器為兩個主要領域:過水區(qū)和污泥區(qū)。污泥區(qū)高度50mm,污泥是通過管排出(直徑15mm)固定在濾波器。曝氣和入口均高于污泥面積。泥區(qū)過濾器的上方也提供了空氣。這些環(huán)直徑為120mm,氣孔均勻位于圓形曝氣回路

6、。出口(直徑10mm)位于反應器的中心,濾波器下35mm。2.3 綜合廢水探討反應器去除污染物,safs規(guī)模的實驗室用人工合成廢水解決污水,即原出水。綜合污水具有均勻的特點沒有有毒或工業(yè)部件的危險。污水合成是基于原污水組成用phanapavudhikul研究實驗室和中試規(guī)模對活性污泥溫度的影響。化學成分的合成及其濃度污水在表1中給出。該過濾器的進水需每兩天更換避免明顯的老化。進水是用熱水溶解濃縮配方制備的,其次是在進料罐用自來水稀釋(500升)的所需濃度。然后廢水使用兩個蠕動泵送入反應器。在實驗期間,saf的溶解氧(do)維持上述4mg/l(溶解氧測定儀,ysi模型58)。這也是保證低溶解氧沒

7、有限制。 在所有的實驗中,任何沖擊荷載之前,合成廢水是在反應器底部的入口(圖1)。整體體積在每個反應器的合成體積為6.8 l和保持恒定并反應器頂部借助溢流。壓縮空氣通過空氣回路供給(圖1)。短期沖擊加載條件下,水力停留時間從22小時減少到11小時增加一倍,從原來的流量0.00525分鐘1。正常操作條件短期沖擊負荷后12小時恢復。沖擊負荷后,兩個反應器的操作在正常條件下,監(jiān)測到9天后hrt進一步恢復到最初的22小時觀察的,復蘇和任何的長期影響沖擊載荷。性能效率進行toc,ss、氨。在有機沖擊負荷的液壓流量保持不變和有機負荷的加入提高了合成廢水的雙組分濃度,該模型解決了污水進行32天正常運行后從液

8、壓沖擊試驗恢復。2.4 分析2.4.1 總有機碳 羅斯蒙特dohrmann總有機碳分析儀dc-190用于測定總碳(tc)和無機碳(ic),toc是由減法計算。樣本量為50 l,注射用注射器。平均值和標準偏差通過分析計算,只有那些標準值偏差小于1%被記錄和使用。分析按標準方法進行。這個分析報告精度是5%。2.4.2 總懸浮固體 與標準的技術進行了分析。樣品充分混合,然后通過過濾加權的whatman gfc(70mm)與孔徑大小的過濾器1.2 m0.3,渣留在濾紙上干燥,在105c為1小時,放在干燥器和加權直到體重變化對加熱小于4%或0.5毫克。增加總懸浮固體在濾波器的權值時調整對樣品的體積。報道

9、分析的精度是5%。2.4.3 氨氮 用納氏試劑分析氨氮,方法納入百靈達系統(tǒng)。10ml稀釋樣品將氨氮濃度為0.10毫克/升的基礎上,污水和穩(wěn)態(tài)性能。檢測前準備氨1號和2依次加入攪拌,離開10分鐘。然后,樣品用光度計讀(百靈達5000)在波長640 nm處。這種精度分析報告是5%。3 結果與討論3.1 短期負荷沖擊 從瞬態(tài)液壓沖擊停留時間(hrt)減少一半至11小時的水力停留時間為12小時,24介紹了24。瞬態(tài)加載后污水濃度的測量從24小時開始。結果,ss,濁度為safs羊毛氨氮去除與kaldnes媒介都顯示在圖。24。3.1.1 toc的去除結果表明,減少水力停留后時間(hrt)的一半在沖擊研究

10、(圖2),safs在3天發(fā)現(xiàn)適應新的進料濃度。因此,兩種反應器的toc的流出物從羊毛與kaldnes處從4到6毫克/升立即增加超過10毫克/升(圖2),在時間1天后,加載液壓沖擊。反應堆穩(wěn)定這種狀態(tài),并在72小時內返回穩(wěn)定運行后停止這是適用于半天。它花了22個小時對沖擊負荷進行消散作用?;謴秃?,最大toc的降解效率為95.63%和95.72%,分別用 saf羊毛與kaldnes。safs的快速恢復遵循液壓沖擊載荷的部分原因可能是因為一個適應和活性生物量,有效地降低了額外的水力負荷的增加。的對液壓沖擊過程中的性能惡化原因,可能是由于將提高液壓壓力作為一個結果,導致生物量和襯底之間更少的接觸時間。

11、nachaiyasit和斯塔基在以后的工作中注意減少20小時增加至10小時,在短的水力停留時間,將必須有在床上發(fā)生的,和床的性能使它承受液壓沖擊。這表明,該系統(tǒng)在高水力負荷為較低的去除性能,看到在這項工作的safs發(fā)生可能是由于發(fā)生死區(qū)和短路?;逯皇峭ㄟ^水洗不被代謝,可能是因為將生物質中的床上發(fā)生的,或很短的接觸微生物和襯底之間的時間。生物質沖刷可以解釋的出水ss減少,但這不是由結果支持。相比其他進程的沖擊引起的穩(wěn)定,李森科和惠頓性同時指出。在他們的實驗沖擊是短期的沖擊(30分鐘)5.23升容量,生物過濾器充滿媒介對498.7m2/m3比表面積的影響研究氨氮去除。它被發(fā)現(xiàn)是更有效的利用除氨比

12、滴濾器。他們認為該不敏感的干擾由于滴過濾器有不同一些混合和傳入的廢水在safs稀釋。濾池中常見的saf生物膜的保護嵌入式細菌可能有害的環(huán)境條件。一旦有利的環(huán)境條件下恢復,細菌就恢復以前的水平,降解。toc的出水濃度saf與羊毛的恢復時間與kaldnes類似。3.1.2 ss的去除hrt的減小對出水ss濃度沒有明顯的影響(圖3)。在懸浮固體濃度為3mgl第一天有輕微的增加,在反應器中填充羊毛沖擊負荷。然而,ss數(shù)據(jù)對該系統(tǒng)的波動在42天的期限。ss去除率達到了100%和98.67%,分別為saf羊毛與kaldnes而經歷短期shockwithout代謝。這種現(xiàn)象與短的水力停留時間也被grobic

13、ki和斯塔基觀察到。這表明,較低的ss的去除性能系統(tǒng)在高水力負荷由于液壓沖洗出來的固體。3.1.3 氨氮去除氨氮的去除觀察到最大的效果是液壓沖擊從圖4可以看出,這是對一個額外的0.14克氨進行了介紹。短期沖擊負荷,出水氨氮濃度從兩個反應器用羊毛與kaldnes從1.0mgl到17毫克/升和25毫克/升迅速增加,分別為。氨濃度第一天迅速從saf羊毛下降,恢復到預沖擊操作并通過第三天的性能。saf的恢復期與kaldnes比saf再顯然的一天羊毛(圖4),這表明,羊毛在共同安全與其他數(shù)據(jù)增加到克服水力沖擊負荷的能力與kaldnes的saf相比。之前的沖擊使羊毛saf與kaldnes平均氨氮去除為 9

14、9.1%和98.7%,這減少了60.61%和42.42%,而沖擊最大后氨的去除效率為99.8%和99.7%,它類似于平均氨效率。下面的液壓沖擊負荷引起的快速恢復可以歸因于活性和固定的硝化細菌,整個實驗有效地回收和退化的襯底。它是不可能有足夠的時間來刺激額外的生物量增長。在目前的研究中,氨氮降解明顯比其他參數(shù)更敏感,如toc和ss,確認硝化作用是更容易的改變實驗條件。其原因可能是由于硝化細菌緩慢自養(yǎng)生長。他們是空間和氧貧窮的競爭對手,因此他們只發(fā)現(xiàn)生物膜,他們很容易在低氧氣濃度長滿了異養(yǎng)生物。一些研究表明,異養(yǎng)微生物被安排在下部的上流式saf在大多數(shù)有機轉換發(fā)生。硝化細菌就能夠占據(jù)顯著的硝化作用

15、發(fā)生的上部。這是該模式在營養(yǎng)物去除活性污泥并在單獨的室是專為toc去除率,硝化,除磷富集硝化。hrt的減少都會削弱這些硝化細菌的活性,通過增加競爭,從異養(yǎng)微生物硝化細菌的生長速度和降低抑制物質,為了盡快異養(yǎng)微生物反應能力,導致出水氨氮濃度的增加。此外,較低的去除性能的系統(tǒng)在高水力負荷在safs發(fā)生是由于發(fā)生死區(qū)和短路。此外,液壓沖擊,包括獨立的生物硝化細菌可以沖刷性能降低。3.2 長期的沖擊載荷長期有機沖擊負荷時,飼料的有機負荷率(olr)增加了一倍,并且持續(xù)了40天,在這期間toc,ss為safs羊毛去除氨和kaldnes做出了貢獻。進水的ph值和出水保持在7和8之間。進水濃度增加,模擬可能

16、發(fā)生的事故。3.2.1 toc的去除 長期有機沖擊負荷,出水toc濃度增加到4天之后它開始調整兩種反應器(圖5)。即使雙重加載的兩個saf反應堆穩(wěn)定的快速反應也休克。兩個safs達到新的穩(wěn)定狀態(tài)相當迅速,所需的時間大約是四hrt。這時間允許增加微生物的生長來應對沖擊載荷是足夠的,之后,反應堆回到他們的穩(wěn)定性能。新的olr為0.22公斤/立方米,toc d,兩次穩(wěn)態(tài)運行。平均toc去除率超過95.25%,在以前的較低,甚至更高的有機負荷(羊毛與kaldnes反應器分別在94.26%和93.30%)。這表明更大的去除過程沒有完全加載。結束實驗運行穩(wěn)定持續(xù)(39天),表明該organicshock負

17、荷穩(wěn)定,他們保持著一個類似的toc的去除,即使當加載效率增加了一倍。兩個safs擠滿了羊毛與kaldnestoc去除率之間的差異是微不足道的(圖5)。一倍的進料濃度在厭氧折流板的影響反應器的8 g / l的cod在20小時的水力停留時間為20天,發(fā)現(xiàn)反應器也能適應雙有機沖擊載荷和保持相同的去除效率。在有機沖擊負荷的增加(olr為2.60 tcodg /升/天增加到3.92 tcodg /升/天一個最大的6.25 tcodg /升/天)sbrs很少,在可溶性化學需氧量(scod)和臨時性的影響揮發(fā)性脂肪酸(vfa)的去除效率。這些研究符合本研究的結果。雖然nachaiyasit 認為在液壓沖擊基

18、板的質量轉移到生物量聚集率似乎是限制因素。在理論上的主要限制因子在有機沖擊的總體反應率應該是由生物量和消費的吸收動力學。休克負載可以提供到反應器的反應預測的見解,例如短路和經濟增長之間的相互作用。這項工作是在沖擊器工作首先提出安全率模型的限制因素。該顯示的穩(wěn)定性在該生物膜中發(fā)揮了重要的作用,抗有機負荷沖擊。在高有機質較高的去除性能荷載作用下發(fā)生的比較研究為例,其他的研究,nachaiyasit歸因于較高的生物量濃度和更好的混合。3.2.2 ss的去除 羊毛纖維良好的過濾能力是體現(xiàn)在有機沖擊負荷的結果。ss排放濃度從羊毛安全帶上很低是相對穩(wěn)定的。相反,ss出水濃度saf與kaldnes介質波動明

19、顯(圖6),ss值高達100毫克/升。這是特別,昨日(1日開始14)在調試過程中,但也很明顯,在實驗期結束(32天和39天)的沖擊載荷作用下。sd出水ss值的有機沖擊負荷在較大(9.11和50.32,分別為羊毛和kaldnes saf)非穩(wěn)態(tài)期saf羊毛和kaldnes分別為3.66和14.11,如氨可以作為一個指標的不穩(wěn)定性??磥碜钣锌赡艿氖牵瑂s高負荷下,一些有影響的ss不被保留或生物降解的saf的停留時間內與kaldnes。早期的結果表明,流體湍流是一個因素。toc是不受影響的(圖5)但固體損失saf與kaldnes均增加,所以可溶性物質生物量和過濾器的能力無法應付額外的固體有機物即使液

20、壓流量是不變的。因此,盡管穩(wěn)定的toc結果,不同的ss出水濃度可能表明,固體停留成為關鍵,對績效表現(xiàn)較弱的saf與kaldnes的關鍵,。fullplants的調查(大型污水處理廠)在印度證實ss的去除性能也會受到影響,甚至10%增加流量。saf的羊毛有穩(wěn)定的出水ss(圖6)提示無論是動力學的生物量或流體力學湍流成為saf擠滿了羊毛的限制。在我們的研究液壓沖擊對ss比有機不利負荷可能是較好的反應器混合條件的結果。3.2.3 氨氮去除 safs為擠滿了羊毛與kaldnes出水氨氮濃度媒介上升至最高,經過4天(圖7)之后,有回收廢水氨濃度。saf與kaldnes反應器氨的排放濃度的波動超過大多數(shù)羊

21、毛的有機負荷沖擊。這不是安全與穩(wěn)定的。因此,有機的沖擊荷載引起的干擾去除氨氮,即使生物量的不足已經補償,持續(xù)了34次的增長率。硝化細菌增長率被認為是10天左右。硝化細菌的生長速率慢,使他們很容易競爭。3.2.4 溫度對toc的影響,ss和氨氮去除該報告為不易變異的環(huán)境溫度與活性污泥,在實驗過程中的溫度變化從15到21c ,對液壓沖擊,從11到20.5c的有機沖擊載荷作用下的。與溫度之間的關系有沒有確鑿的toc,ss和氨氮去除。對ss的去除的一些趨勢被檢測到。因此,羊毛與kaldnes 在14和17c平均ss的去除效率分別為97%和92%,實現(xiàn)更好的ss的去除效率在17和20.5c之間,用羊毛與

22、kaldnes safs導致的平均值分別為97.5% 95.5%。一個更大的固體從羊毛的產量是因為預期的故障羊毛被預期但這一定是生物降解。4 結論 (1)在這項工作中的測量參數(shù),toc,ss和氨通過瞬態(tài)水力沖擊負荷對saf 影響用羊毛或kaldnes媒介。氨去除明顯比其他參數(shù)更敏感,這是歸因于硝化細菌作用的緩慢增長,這是空間和基板的對手。 (2)擠滿了毛safs或kaldnes環(huán)展出后短期快速返回到正常操作條件和較長的沖擊載荷??偟膩碚f,羊毛的saf的能力最好,克服液壓沖擊比saf與kaldnes。這表明,傳質和生物量的增長更重要的是通過生物量沖洗損失。快速恢復建議safs是這些不敏感干擾比滴

23、流過濾器。該顯示的生物膜穩(wěn)定性和混合的條件對抗有機沖擊負荷發(fā)揮了重要作用。 (3)在短期的液壓沖擊的研究,無論是羊毛kaldnes saf均恢復正常運行的沖擊歷時半停止一天后的72小時內。toc的降解效率的最大速率95.63%和95.72%,氨氮去除率最高效率為99.8%和99.69%,分別為安全帶羊毛與kaldnes媒介。 (4)長期有機沖擊負荷時,4天之后出水的toc濃度的影響,這是能夠調整。在反應堆回到穩(wěn)定狀態(tài),平均去除率達95%以上,沒有區(qū)別,休克前和穩(wěn)定運行繼續(xù)實驗結束時(39天)。在toc去除safs擠滿羊毛和kaldnes的差異是微不足道的。 (5)羊毛纖維良好的過濾能力是體現(xiàn)在

24、出水ss濃度較低(主要是,少于20毫克/升),并與出水ss濃度變化不大,然而,ss的出水濃度saf與kaldnes顯著波動。在安全帶上羊毛提出了這水動力動蕩不成為限制條件。在我們的研究中液壓沖擊比有機負荷以及不利的建議在反應器中的混合條件。 (6)有機負荷增加一倍,反應器的反應快速的沖擊而不穩(wěn)定的建議的波動在氨氮,出水ss和。長期的有機負荷沖擊造成了更大的干擾,直到有足夠的生物質補償,這表明傳質比生長動力學不重要。致謝:作者感謝拉夫堡大學和德蒙特福特大學的設施catalytic strategies for industrial water re-usef.e. hancocksynetix,

25、 billingham, cleveland, ts23 1lb, ukabstractthe use of catalytic processes in pollution abatement and resource recovery is widespread and of significant economic importance r.j. farrauto, c.h. bartholomew, fundamentals of industrial catalytic processes, blackie academic and professional,1997. for wa

26、ter recovery and re-use chemo-catalysis is only just starting to make an impact although bio-catalysis is well established j.n. horan, biologicalwastewater treatment systems; theory and operation, chichester, wiley, 1990. this paper will discuss some of the principles behind developing chemo-catalyt

27、ic processes for water re-use. within this context oxidative catalytic chemistry has many opportunities to underpin the development of successful processes and many emerging technologies based on this chemistry can be considered .keywords: cod removal; catalytic oxidation; industrial water treatment

28、1.introduction industrial water re-use in europe has not yet started on the large scale. however, with potential long term changes in european weather and the need for more water abstraction from boreholes and rivers, the availability of water at low prices will become increasingly rare. as water pr

29、ices rise there will come a point when technologies that exist now (or are being developed) will make water recycle and re-use a viable commercial operation. as that future approaches, it is worth stating the most important fact about wastewater improvement avoid it completely if at all possible! it

30、 is best to consider water not as a naturally available cheap solvent but rather, difficult to purify, easily contaminated material that if allowed into the environment will permeate all parts of the biosphere. a pollutant is just a material in the wrong place and therefore design your process to ke

31、ep the material where it should be contained and safe. avoidance and then minimisation are the two first steps in looking at any pollutant removal problem. of course avoidance may not be an option on an existing plant where any changes may have large consequences for plant items if major flowsheet r

32、evision were required. also avoidance may mean simply transferring the issue from the aqueous phase to the gas phase. there are advantages and disadvantages to both water and gas pollutant abatement. however, it must be remembered that gas phase organic pollutant removal (voc combustion etc.,) is mu

33、ch more advanced than the equivalent water cod removal and therefore worth consideration 1. because these aspects cannot be over-emphasised,a third step would be to visit the first two steps again. clean-up is expensive, recycle and re-use even if you have a cost effective process is still more capi

34、tal equipment that will lower your return on assets and make the process less financially attractive. at present the best technology for water recycle is membrane based. this is the only technology that will produce a sufficiently clean permeate for chemical process use. however, the technology cann

35、ot be used in isolation and in many (all) cases will require filtration upstream and a technique for handling the downstream retentate containing the pollutants. thus, hybrid technologies are required that together can handle the all aspects of the water improvement process6,7,8.hence the general ru

36、les for wastewater improvement are: 1. avoid if possible, consider all possible ways to minimise. 2. keep contaminated streams separate. 3. treat each stream at source for maximum concentration and minimum flow. 4. measure and identify contaminants over complete process cycle. look for peaks, which

37、will prove costly to manage and attempt to run the process as close to typical values as possible. this paper will consider the industries that are affected by wastewater issues and the technologies that are available to dispose of the retentate which will contain the pollutants from the wastewater

38、effluent. the paper will describe some of the problems to be overcome and how the technologies solve these problems to varying degrees. it will also discuss how the cost driver should influence developers of future technologies. 2. the industries the process industries that have a significant wastew

39、ater effluent are shown in fig. 1. these process industries can be involved in wastewater treatment in many areas and some illustrations of this are outlined below. fig. 1. process industries with wastewater issues. 2.1. refineries the process of bringing oil to the refinery will often produce conta

40、minated water. oil pipelines from offshore rigs are cleaned with water; oil ships ballast with water and the result can be significant water improvement issues. 2.2. chemicals the synthesis of intermediate and speciality chemicals often involve the use of a water wash step to remove impurities or wa

41、sh out residual flammable solvents before drying. 2.3. petrochemicals ethylene plants need to remove acid gases (co2, h2s) formed in the manufacture process. this situation can be exacerbated by the need to add sulphur compounds before the pyrolysis stage to improve the process selectivity. caustic

42、scrubbing is the usual method and this produces a significant water effluent disposal problem. 2.4. pharmaceuticals and agrochemicals these industries can have water wash steps in synthesis but in addition they are often formulated with water-based surfactants or wetting agents. 2.5. foods and bever

43、ages clearly use water in processing and cod and bod issues will be the end result. 2.6. pulp and paper this industry uses very large quantities of water for processing aqueous peroxide and enzymes for bleaching in addition to the standard kraft type processing of the pulp. it is important to realis

44、e how much human society contributes to contaminated water and an investigation of the flow rates through municipal treatment plants soon shows the significance of non-process industry derived wastewater. 3. the technologies the technologies for recalcitrant cod and toxic pollutants in aqueous efflu

45、ent are shown in fig. 2. these examples of technologies 2,6,8 available or in development can be categorised according to the general principle underlying the mechanism of action. if in addition the adsorption (absorption) processes are ignored for this catalysis discussion then the categories are:

46、1. biocatalysis 2. air/oxygen based catalytic (or non-catalytic). 3. chemical oxidation 1. without catalysis using chemical oxidants 2. with catalysis using either the generation of _oh or active oxygen transfer. biocatalysis is an excellent technology for municipal wastewater treatment providing a

47、very cost-effective route for the removal of organics from water. it is capable of much development via the use of different types of bacteria to increase the overall flexibility of the technology. one issue remains what to do with all the activated sludge even after mass reduction by de-watering. t

48、he quantities involved mean that this is not an easy problem to solve and re-use as a fertilizer can only use so much. the sludge can be toxic via absorption of heavy metals, recalcitrant toxic cod. in this case incineration and safe disposal of the ash to acceptable landfill may be required. air ba

49、sed oxidation 6,7 is very attractive because providing purer grades of oxygen are not required if the oxidant is free. unfortunately, it is only slightly soluble in water, rather unreactive at low temperatures and, therefore, needs heat and pressure to deliver reasonable rates of reaction. these pla

50、nts become capital intensive as pressures (from _10 to 100 bar) are used. therefore, although the running costs maybe low the initial capital outlay on the plant has a very significant effect on the costs of the process. catalysis improves the rates of reaction and hence lowers the temperature and p

51、ressure but is not able to avoid them and hence does not offer a complete solution. the catalysts used are generally group viii metals such as cobalt or copper. the leaching of these metals into the aqueous phase is a difficulty that inhibits the general use of heterogeneous catalysts 7. chemical ox

52、idation with cheap oxidants has been well practised on integrated chemical plants. the usual example is waste sodium hypochlorite generated in chlor-alkali units that can be utilised to oxidise cod streams from other plants within the complex. hydrogen peroxide, chlorine dioxide, potassium permangan

53、ate are all possible oxidants in this type of process. the choice is primarily determined by which is the cheapest at the point of use. a secondary consideration is how effective is the oxidant. possibly the most researched catalytic area is the generation and use of _oh as a very active oxidant (ad

54、vanced oxidation processes) 8. there are a variety of ways of doing this but the most usual is with photons and a photocatalyst. the photocatalyst is normally tio2 but other materials with a suitable band gap can be used 9,10. the processes can be very active however the engineering difficulties of

55、getting light, a catalyst and the effluent efficiently contacted is not easy. in fact the poor efficiency of light usage by the catalyst (either through contacting problems or inherent to the catalyst) make this process only suitable for light from solar sources. photons derived from electrical powe

56、r that comes from fossil fuels are not acceptable because the carbon dioxide emission this implies far outweighs and cod abatement. hydroelectric power (and nuclear power) are possible sources but the basic inefficiency is not being avoided. hydrogen peroxide and ozone have been used with photocatal

57、ysis but they can be used separately or together with catalysts to effect cod oxidation. for ozone there is the problem of the manufacturing route, corona discharge, which is a capital intensive process often limits its application and better route to ozone would be very useful. it is important to n

58、ote at this point that the oxidants discussed do not have sufficient inherent reactivity to be use without promotion. thus, catalysis is central to their effective use against both simple organics (often solvents) or complex recalcitrant cod. hence, the use of fentons catalyst (fe) for hydrogen peroxide 11. in terms of catalysis these oxidants together with hypochlorite form a set of materials that can act has active oxygen transfer (aot) oxidants in the presence of a suitable catalyst. if the aot oxidant is hypochlorite or hydrogen peroxide then

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論