接觸網(wǎng)外文資料 英漢翻譯_第1頁
接觸網(wǎng)外文資料 英漢翻譯_第2頁
接觸網(wǎng)外文資料 英漢翻譯_第3頁
接觸網(wǎng)外文資料 英漢翻譯_第4頁
接觸網(wǎng)外文資料 英漢翻譯_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Development of Feeder Messenger Wire Type Overhead Contact Line with One Copper Messenger Wire Takahiro HAMADA Atsushi IWAINAKA Researcher, Former Researcher, Contact Line Structures, Power Supply Technology Div. Feeder messenger wire type overhead contact lines have drawn attention recently from th

2、e viewpoint of labor-saving for maintenance. A type that uses two PH356mm2 messenger wires was introduced into the Tokyo district, while another that uses an SBTACSR730mm2 messenger wire into the Kansai district. In terms of the number of messenger wires, the one-wire type is more useful, as it invo

3、lves a smaller number of parts. As the material for the wire, copper is better than aluminum, since it does not require connection with different metals. To realize the advantages of the two systems, therefore, we developed a feeder messenger wire type overhead contact line that has only one copper

4、messenger wire. Keywords: feeder messenger wire type overhead contact line, PH730mm2 messenger wire, current collecting characteristics 1. Introduction Feeder messenger wire type overhead contact lines have a structure to combine the function of feeder with the messenger wire. They have drawn attent

5、ion recently in Japan from the viewpoint of labor-saving for maintenance. They use two hard-drawn copper stranded conductor PH356mm2 messenger wires in the Tokyo district and an aluminum conductor steel-reinforced SBTACSR730mm2 messenger wire in the Kansai district. In terms of the number of messeng

6、er wires, the one-wire type is more useful as it involves a smaller number of parts, and copper is better as the material for the wire than aluminum since it does not require connection with different metals. Therefore, we promoted this research for the purpose of developing a feeder messenger wire

7、type overhead contact line that has only one copper messenger wire to realize the advantages of the two systems. In order to determine what wires suit the new overhead contact line, we chose a narrow-gauge line in Tokyo as a test site, studied whether electrical and mechanical characteristics of wir

8、es satisfy the standard values, and examined the current collecting characteristics of various types of wires through simulation. As a result, it was proved that the PH730mm2 messenger wire was the most appropriate in the overcrowded railway sections in Tokyo. Based on this result, we actually const

9、ructed a PH730mm2 messenger wire and investigated its current collecting characteristics by using current collection testing equipment to find that standard values were all satisfied at the speed of 160 km/h. It was also proved that this wire type could be used for operation at speeds up to 160 km/h

10、. 2. Examination of the optimum wires Table 1 lists the wires examined as candidates of one onemessenger wire. We examined the current capacity, wire resistance, tensile strength, minimum hanger length and current collecting characteristics, to determine the applicability Table 1 Dimensions of wire

11、2.1 Current capacity We examined whether the wire temperature is below the allowable limit at the conditions in Table 2. The allowable temperature is 90 for the hard drawn copperstranded conductor (PH) and 150 for the thermalproofhard drawn copper stranded conductor (THDC).Figure 1 shows the wire te

12、mperature rises when a currentof 855 A, which is the maximum value for wiresused in Tokyo, flows for 3,600 seconds. The shaded portionrepresents the surrounding temperature of 35 , Table 2 Conditions of temperature calculation Fig. 1 Wire temperature rises and the portion of slash mark the temperatu

13、re rises by the Joule heat. There are no wires of THDC or PH that show a temperature rise over the allowable limit under this condition. 2.2 Wire resistance To evaluate the wire resistance, we compared several kinds of messengers with two PH356mm2 messenger wires currently used on the narrow-gauge l

14、ines in Tokyo. In Fig. 2, the slash lined bars show the resistance after the temperature rise at an 855 A current flow and the shaded bars show the wire resistance at 20 . A comparison of the bar), wires of with PH356mm2 of resistance two wires that test at 20 (shaded proves that the resistance of T

15、HDC670mm2 wire and PH670mm2 wire is higher than that of two PH356mm2 wires. Moreover, in the case of the resistance after temperature rise (slash), only the resistance of THDC670mm2 wire and PH670mm2 wire is higher than that of two PH356mm2 wires. Fig. 2 Wire resistance 2.3 Tensile strength Since it

16、 is assumed that this catenary system is constructed to a standard tension of 39.2 kN, it is a condition that the tensile strength is set at over 86.24 kN, as the safety factor of copper is 2.2 in Japan. All the tensile strengths for the test wires referred to in this paper are over 86.24 kN. 2.4 Mi

17、nimum hanger length We calculated the minimum hanger length on the assumption that the messenger wire tension is 39.2 kN; contact wire tension is 14.7 kN; and span length is 50 m. When we assume a standard system height (850 mm) equivalent to that of existing feeder messenger wire type overhead cont

18、act line in Tokyo, only the minimum hanger length of PH840mm2 wire is less than 150 mm. If the system height is assumed to be 960 mm, the minimum hanger length of PH840mm2 wire is larger than 150 mm. 2.5 Current collecting characteristics We calculated the contact loss rate and contact wire uplift a

19、nd strain at support by simulation when we use each tested wire as a messenger, and compared the results with the standard values that can realize stable current collection. Tables 3 and 4 show simulation conditions and standard values, respectively. Figure 3 shows the contact loss rate of the 2nd p

20、antograph. As a result of the simulation, the contact loss rate of the 1st pantograph was set at 0 % for all wires and contact loss rates of the 2nd and 3rd pantographs became several percent at speeds higher than 180 km/h. However, the contact loss rate up to 160 km/h, which is practically the high

21、est speed on narrow-gauge lines, is 0 %. Figures 4 and 5 show the contact wire uplift and strain at support, re- Table 3 Conditions of simulation Table 4 Standard values of current collecting characteristics Fig. 3 Simulation results (Contact loss rate) Fig.4 Simulation results (Contact wire strain

22、at support) Fig. 5 Simulation results (Contact wire uplift at support) spectively. Either is not over the standard value up to the speed of 200 km/h with any wire. 2.6 Examination results Since the current capacity, tensile strength and current collecting characteristics satisfied the standard value

23、s no matter which wire we use, we judged the appropriateness of the wires based on the wire resistance. Table 5 shows the judgment results. Under the condition of an 855 A current flow, we marked O if the wire resistance satisfies the judgment standard and X if not. Consequently, we reached a conclu

24、sion that use of PH730mm2 wire is appropriate with respect to the 855 A current capacity. Table 5 Judgment results 3. Test by current collection testing equipment The current collection testing equipment of the Railway Technical Research Institute used for this test has a full length of 500 m and ca

25、n carry out running tests up to the speed of 160 km/h, by using an actual contact wire and pantograph. We chose a PH730mm2 wire among the wires which were appropriate for the test in Chapter 2, constructed it as a messenger for the testing equipment, and examined its current collecting characteristi

26、cs. Test conditions are as follows. 3.1 Test conditions 3.1.1 Basic composition of catenary and used pantograph The catenary of the testing equipment was composed to the specification shown in Table 6, which is used for narrow-gauge lines in Tokyo. This system has two PH356mm2 messenger wires and a

27、GTM-SN170mm2 contact wire. Table 6 Test conditions 3.1.2 Pantograph damper We used a PS26 pantograph with a damper currently used for the limited express trains on narrow-gauge lines, and also examined the case where the damper is removed to assume common vehicles. Figure 6 shows the catenary compos

28、ition and the measuring points of testing equipment. Fig. 6 Catenary composition and measuring points of current collection testing equipment 3.2 Test results The test results are shown in Figs. 7 to 9 when messenger tension is set at the standard value (39.2 kN). In these Figures, the results in th

29、e cases with and without pantograph dampers are compared. 3.2.1 Contact loss rate Figure 7 shows the relation between speed and contact loss rate. In the case where there is a pantograph damper, it is 0.26 % at the speed of about 156 km/h. However, it is substantially less than the standard value of

30、 5 %. In the case where there are no dampers, the contact loss is not generated up to about 150 km/h. 3.2.2 Contact wire strain Figure 8 shows the relation between speed and con-tact wire strain at support. The allowable stress for oscillating fatigue of copper contact wire is set at 60 MPa based on

31、 the results of an experiment, or 50010-6 when converted into strain. Since the strain in this experiment is considered as the difference between the maximum and minimum values, the standard value of contact wire strain is set at 1000 10-6 at the full amplitude. As it takes a maximum value at about

32、150 km/h, the value is 175 10-6 at the maximum, which is considerably less than the standard value of contact wire strain. Fig. 7 Test results (Contact loss rate) Fig. 8 Test results (Contact wire strain at support) Fig. 9 Test results (Contact wire uplift at support) 3.2.3 Contact wire uplift Figur

33、e 9 shows the relation between speed and contact wire uplift at support. As it takes a maximum value of 10.8 mm at about 120 km/h, it is considerably to be less than the standard value of contact wire uplift at support. Figures 7 to 9 show the difference in the characteristics when a pantograph damp

34、er is used or not, we understand that the contact wire strain in the case where no dampers are used is a little smaller. Regarding other items, the current collecting characteristics are virtually not different from each other irrespective of whether a damper is used or not. 3.3 Conclusion of the te

35、st When a PH730mm2 wire is selected and constructed to the standard tension of 39.2 kN as a messenger, the contact loss rate, contact wire strain and contact wire uplift at support satisfy the standard values. We understood that this system can be used up to 160 km/h. Moreover, when the pantograph d

36、amper is removed, it turns out that the current collecting characteristics do not change much or there are no problems in running. However, in the actual case where two or more pantographs are used, and the state of catenary is considered to be worse than on this testing equipment, the field running

37、 tests need to be performed for final judgment. 4. Conclusion We performed this research to investigate high-quality feeder messenger wire type overhead contact lines and examined a wire of copper system. We selected a PH730mm2 wire and used it as a messenger wire, and examined the current collectin

38、g characteristics at the speed up to 160 km/h by using current collection testing equipment. Although this system has a heavy large-diameter wire and may require difficult construction work, no important problems were experienced in the construction of the test equipment. It is required, however, to

39、 investigate the problems that will arise in the construction work on actual railway lines in service. References 1) Shimodaira, Y.: Study on messenger wire of wire type overhead contact line, National convention of I.E.E. JAPAN (in Japanese), 5-212, 1999. 2)Iwainaka, A., Suzuki, A.: Current collect

40、ing characteristics of one line copper feeder messenger wire type over head contact line, J-RAIL99 (in Japanese), pp.265, 1999. From:QR Of RTRI ,Vol.44,No.2,May.2003 譯文 接觸網(wǎng)承力索饋線與支線接觸網(wǎng)的發(fā)展 濱田孝弘 研究員 巖井淳納卡 前研究員 電源技術(shù)科接觸網(wǎng)結(jié)構(gòu)部 支線接觸網(wǎng)導(dǎo)線以其節(jié)省勞力與維修費(fèi)用的優(yōu)點(diǎn)引起了人們的關(guān)注。A 型承 2的電纜而被引入到東京當(dāng)?shù)氐模?mm 而另一種力索使用的是兩根截面積PH3562 型承力索。

41、從承力索的數(shù)量上來看,mm 是使用到關(guān)西地區(qū)的 SB-TACSR730 單線型更有用,因?yàn)樗婕暗牟考?shù)量較少。作為線材,銅比鋁好,因?yàn)樗恍枰B接與不同金屬相連接。為了實(shí)現(xiàn)這兩個(gè)系統(tǒng)的優(yōu)勢(shì),因此,我們制定了支線支接觸網(wǎng)導(dǎo)線類型,只有一根銅承力索。 2 承力索,目前收集的特點(diǎn) 關(guān)鍵詞:支線支接觸網(wǎng)導(dǎo)線類型,PH730 mm1 簡介 支線接觸網(wǎng)導(dǎo)線由一個(gè)結(jié)構(gòu)部件將接觸饋線和信號(hào)線連接起來,它們以其在運(yùn)用維護(hù)中節(jié)省勞動(dòng)力的特點(diǎn)而在日本被引起關(guān)注。這種使用在東京地區(qū)的 2 接觸導(dǎo)線運(yùn)用兩個(gè)銅制的硬盤將截面積的導(dǎo)線固定,而在關(guān)西地區(qū) mmPH3562 型鋁制接觸線。從承力索的數(shù) TACSR730mm

42、則用的是金屬強(qiáng)度較強(qiáng)的 SB-量上來看,單線型承力索更加適用,原因是它所要求的結(jié)構(gòu)部件很少,銅導(dǎo)線比鋁導(dǎo)線的優(yōu)勢(shì)還在于它不需要考慮與不同金屬的連接問題。因此,我們提倡發(fā)展支線支接觸網(wǎng)導(dǎo)線類型,以只用單銅承力索的森格線為例,實(shí)現(xiàn)對(duì)兩個(gè)系統(tǒng)各自優(yōu)點(diǎn)研究的目的。 為了確定什么導(dǎo)線能適應(yīng)新的過頭接觸線,我們選擇了東京的一段窄軌鐵路作為一個(gè)試驗(yàn)場(chǎng),研究電線的電氣和機(jī)械特性是否符合標(biāo)準(zhǔn)值,并通過仿真研究2 支線適合用在東京最擁擠 mm 目前收集的各類特色的電線。結(jié)果證明了PH730 的鐵路上。 2 承力索 mm 在此基礎(chǔ)上,我們實(shí)際上還構(gòu)建了利用現(xiàn)有檢測(cè)設(shè)備對(duì) PH730 的特點(diǎn)進(jìn)行檢測(cè),目前的發(fā)現(xiàn),收集

43、的標(biāo)準(zhǔn)值均在 160km/h 的速度上,對(duì)此我們表示滿意同時(shí)它也證明了這種電線類型可用于操作速度。 2 考核最佳線路 表 1 列出了作為我們研究對(duì)象的承力索導(dǎo)線。我們研究了導(dǎo)線的載流能力,線路阻抗,線材的拉伸強(qiáng)度,最小長度和電流收集特點(diǎn),確定這些電線適用于一個(gè)支線系統(tǒng)的溫度。 2.1 載流能力 表 2 所示條件是我們研究允許線材溫度低于限制條件的情況。PH 型硬銅絞顯示1。圖 150)的允許溫度為 THDC,熱防硬拉絞線(90 線的允許溫度是了導(dǎo)線溫度升高時(shí),電流 3600 秒內(nèi)流動(dòng)了 885A,這是在東京用電線路上電流流動(dòng)的最大值。其中的陰影部分代表環(huán)境溫度為 35時(shí)的焦耳熱量,而斜線部分則

44、表示上升了的焦耳熱量。在許多 THDC 或 PH 型導(dǎo)線中沒有一個(gè)顯示在此條件下的允許溫度是高于這個(gè)溫度的。 表導(dǎo)線尺寸表 導(dǎo)線名導(dǎo)線類導(dǎo)線總股鋼絞線直徑(2.6127PH670m3.291PH730m 冷拔銅絞4.061PH770mm2.9 127 2 PH840mm2.6 127 2 THDC670mm 熱防硬型 3.2 91 2 THDC730mm 銅絞線 4.0 61 2 THDC770mm 2.9 127 2 THDC840mm 表溫度計(jì)算條件 2 環(huán)境溫度(早上繁忙時(shí)期) 35 日照 2 W/cm0.1 發(fā)射率 0.9 風(fēng)速 0.5 m/s 每小時(shí)(東京單線最大電流)負(fù)載電流 88

45、5A2.2 線路阻抗 為了評(píng)估線路電阻,我們將幾種支線線與目前在東京窄軌線路上使用的兩種PH356 mm2 支線做了比較。在圖 2 中,斜線后內(nèi)襯條顯示的是當(dāng)溫度升高以后在線路上流過一個(gè) 855A 電流的情況,彩色條則表示在溫度為 20時(shí)的線路阻抗。在 20時(shí)將兩根 THDC670mm2 和 PH670mm2 的一對(duì) PH356mm2 電線作比較證明了在此溫度下這兩種導(dǎo)線的電阻都比 PH356mm2 的電阻要高。此外,在溫度上升(斜線部分所示)阻力的情況下,只有 THDC670mm2 導(dǎo)線和PH670mm2 的電阻要高。PH356mm2 導(dǎo)線的電阻比雙線 圖 1 導(dǎo)線溫度升高圖 圖 2 導(dǎo)線電

46、阻 2.3 拉伸強(qiáng)度 為了虛擬出所研究的接觸網(wǎng)系統(tǒng)而構(gòu)建了一個(gè)標(biāo)準(zhǔn)的 39.2 千牛的力,在日本這是一個(gè)拉伸強(qiáng)度將超過 86.24 千牛的設(shè)置,因?yàn)殂~的安全系數(shù)是 2.2。在本篇論文中所提到的所有導(dǎo)線的拉力強(qiáng)度測(cè)試中所提及的力都是超過 86.24 千牛這一設(shè)置值的。 2.4 最小結(jié)構(gòu)長度 我們驗(yàn)證了假設(shè)條件,即承力索張力為 39.2 千牛時(shí)的最低懸掛長度;以及接觸線張力為 14.7 千牛,跨度為 50 米時(shí)的懸掛高度。當(dāng)我們假設(shè)一個(gè)標(biāo)準(zhǔn)的系統(tǒng)高度(850 毫米) ,相當(dāng)于東京現(xiàn)有接駁線式架空使者聯(lián)絡(luò)線的情況,證明了 2型承力索的最小結(jié)構(gòu)長度是小于 150mm 毫米的。如果將系統(tǒng)高度 PH840

47、 只有2 型承力索的最小結(jié)構(gòu)長度將大于小 150 毫米。 mm 毫米,則假定為960PH8402.5 電流損耗 當(dāng)我們我們對(duì)接觸網(wǎng)上的接觸線損率和隆起時(shí)的支持和應(yīng)變進(jìn)行模擬計(jì)算,把每個(gè)測(cè)試線作為一個(gè)支,并與標(biāo)準(zhǔn)值進(jìn)行比較,最終就可以實(shí)現(xiàn)電流的集合。表 3 和表 4 分別為顯示的模擬條件和標(biāo)準(zhǔn)值。圖 3 顯示了第二弓的接觸損失率。作為模擬結(jié)果,我們將第 1 受電弓的接觸損失率定為 0,則當(dāng)列車速度高于 180公里/小時(shí),所有接觸導(dǎo)線和接第二和第三受電弓的損失率就只占了這里面的幾個(gè)百分點(diǎn)。然而,當(dāng)車速為 160 公里/小時(shí)接觸損失率將升高,這實(shí)際上是對(duì)窄軌線的最高速度,對(duì)應(yīng)的接觸損失率是 0。圖

48、4 和圖 5 分別顯示了接觸線隆起和應(yīng)變的支持。無論是不是在標(biāo)準(zhǔn)值情況下,也不論速度能不能達(dá)到 200 公里/小時(shí),也不論是何種導(dǎo)線。 圖仿真結(jié)果(接觸損耗率) 3 2.6 比較結(jié)果 當(dāng)導(dǎo)線的載流能力,拉伸強(qiáng)度和電流損耗滿足標(biāo)準(zhǔn)值時(shí),不論我們用的是哪一種接觸導(dǎo)線,我們判斷的基礎(chǔ)是導(dǎo)線的電阻是否恰當(dāng)。表 5 顯示了選擇結(jié)果。在一個(gè) 855 A 的電流流過的條件下,我們以標(biāo)有“O”標(biāo)記導(dǎo)線證明其電阻是滿足條件的,如果沒有,則以標(biāo)有“X”標(biāo)記的顯示其電阻不滿足條件。如果導(dǎo)線電阻滿足判斷標(biāo)準(zhǔn)和“X” 。因此,我們得出結(jié)論認(rèn)為 PH730mm2 型接觸導(dǎo)線相對(duì)于 855A 的電流容量來使用是恰當(dāng)?shù)摹?3

49、 電流損耗檢測(cè)系統(tǒng) 鐵路技術(shù)研究院用于測(cè)試電流損耗的這套設(shè)備全長有 500 米,該設(shè)備通過一個(gè)實(shí)際接觸線和受電弓可以進(jìn)行時(shí)速 160 公里運(yùn)行的測(cè)試。我們選擇作檢測(cè)的PH730mm2 型接觸線是第二章中所述的各種接觸支線中的一種。我們討論了其電流損耗的特點(diǎn),試驗(yàn)條件如下所述。 3.1 測(cè)試條件 3.1.1 接觸網(wǎng)的基本組成和受電弓的使用 這也是在東京窄軌線路上所使用的規(guī)所示的是接觸網(wǎng)檢測(cè)設(shè)備的組成,6 表格。該系統(tǒng)由兩條 PH356mm2 支線和一條 GTM-SN170mm2 接觸線組成。 表模擬條件 3接觸 GTM-SN170m 支線張 39.2KN接觸線張 14.7KN接觸網(wǎng)的組跨 50m構(gòu)件之間的距 5m結(jié)構(gòu)高 850m型 PS26數(shù)受電 3 ,距離 60m 80m速度 200km/h 100 表標(biāo)準(zhǔn)電流損耗特點(diǎn) 4 接觸損失率少于 5% 接觸線能承受的應(yīng)變 -6 10 小于 500 小于接觸線支撐隆起 70mm 表評(píng)價(jià)結(jié)果 5 接觸線類型

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論