建筑力學(xué)14組合變形_第1頁
建筑力學(xué)14組合變形_第2頁
建筑力學(xué)14組合變形_第3頁
建筑力學(xué)14組合變形_第4頁
建筑力學(xué)14組合變形_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第十一章第十一章 桿件在組合變形下的強(qiáng)度計算桿件在組合變形下的強(qiáng)度計算 1,掌握用疊加法計算組合變形,2,熟悉斜彎曲時橫截面上的內(nèi)力、應(yīng)力和強(qiáng)度計算。3,熟悉拉伸(壓縮)與彎曲組合變形的強(qiáng)度計算、4,偏心壓縮桿件的強(qiáng)度計算,5,掌握截面核心的概念。 11.1 組合變形的概念組合變形的概念n在實際工程中,構(gòu)件的受力情況是復(fù)雜的,構(gòu)件受力后的變形往往不僅是某一種單一的基本變形,而是由兩種或兩種以上的基本變形組合而成的復(fù)雜變形,稱為組合變形。n例如,圖11.1(a)所示的屋架檁條;圖11.1(b)所示的空心墩;圖11.1(c)所示的廠房支柱,也將產(chǎn)生壓縮與彎曲的組合變形。 11.1.1 組合變形的概

2、念組合變形的概念圖11.1 n解決組合變形強(qiáng)度問題,分析和計算的基本步驟是:首先將構(gòu)件的組合變形分解為基本變形;然后計算構(gòu)件在每一種基本變形情況下的應(yīng)力;最后將同一點的應(yīng)力疊加起來,便可得到構(gòu)件在組合變形情況下的應(yīng)力。n試驗證明,只要構(gòu)件的變形很小,且材料服從虎克定律,由上述方法計算的結(jié)果與實際情況基本上是符合的。11.1.2 組合變形的解題方法組合變形的解題方法11.2 斜彎曲斜彎曲n對于橫截面具有對稱軸的梁,當(dāng)橫向力作用在梁的縱向?qū)ΨQ面內(nèi)時,梁變形后的軸線仍位于外力所在的平面內(nèi),這種變形稱為平面彎曲。n如果外力的作用平面雖然通過梁軸線,但是不與梁的縱向?qū)ΨQ面重合時,梁變形后的軸線就不再位于

3、外力所在的平面內(nèi),這種彎曲稱為斜彎曲。 n如圖11.2(a)所示的矩形截面懸臂梁,集中力p作用在梁的自由端,其作用線通過截面形心,并與豎向形心主軸y的夾角為。n將力p沿截面兩個形心主軸y、z方向分解為兩個分力,得npy=pcosnpz=psinn分力py和pz將分別使梁在xoy和xoz兩個主平面內(nèi)發(fā)生平面彎曲。11.2.1 外力的分解外力的分解圖11.2 n在距自由端為x的橫截面上,兩個分力py和pz所引起的彎矩值分別為nmz=pyx=pcosx=mcosnmy=pzx=psinx=msinn該截面上任一點k(y,z),由mz和my所引起的正應(yīng)力分別為n= mzy/iz =y mcos/iz

4、n= myz/iy =z msin/iy 11.2.2 內(nèi)力和應(yīng)力的計算內(nèi)力和應(yīng)力的計算n根據(jù)疊加原理,k點的正應(yīng)力為n=+n = mzy/iz + myz/iy n =m(ycos/iz +zsin/iy)n 式中iz和iy分別是橫截面對形心主軸z和y的慣性矩。正應(yīng)力和的正負(fù)號,可通過平面彎曲的變形情況直接判斷,如圖11.2(b)所示,拉應(yīng)力取正號,壓應(yīng)力取負(fù)號。 圖11.2 n因為中性軸上各點的正應(yīng)力都等于零,設(shè)在中性軸上任一點處的坐標(biāo)為y0和z0,將=0代入式(12.1),有n =m(y0cos/iz +z0 sin/iy)=0n則n y0 cos/iz +z0sin/iy =0n上式稱

5、為斜彎曲時中性軸方程式。 11.2.3 中性軸的位置中性軸的位置n從中可得到中性軸有如下特點:n(1) 中性軸是一條通過形心的斜直線。n(2) 力p穿過一、三象限時,中性軸穿過二、四象限。反之位置互換。n(3) 中性軸與z軸的夾角(圖11.2(c)的正切為ntan=y0/z0= iz/iytann從上式可知,中性軸的位置與外力的數(shù)值有關(guān),只決定于荷載p與y軸的夾角及截面的形狀和尺寸。 圖11.2 n進(jìn)行強(qiáng)度計算,首先要確定危險截面和危險點的位置。危險點在危險截面上離中性軸最遠(yuǎn)的點處,對于工程上常用具有棱角的截面,危險點一定在棱角上。圖11.2(a)所示的懸臂梁,固定端截面的彎矩值最大,為危險截

6、面,該截面上的b、c兩點為危險點,b點產(chǎn)生最大拉應(yīng)力,c點產(chǎn)生最大壓應(yīng)力。n若材料的抗拉和抗壓強(qiáng)度相等,則斜彎曲的強(qiáng)度條件為nmax= mzmax/wz + mymax/wy 11.2.4 強(qiáng)度條件強(qiáng)度條件n對于不同的截面形狀, wz/wy 的比值可按下述范圍選?。簄矩形截面: wz/wy = h/b=1.22;n工字形截面:wz/wy =810;n槽形截面: wz/wy =68。 n【例11.1】跨度l=4m的吊車梁,用32a號工字鋼制成,材料為a3鋼,許用應(yīng)力=160mpa。作用在梁上的集中力p=30kn,其作用線與橫截面鉛垂對稱軸的夾角=15,如圖11.3所示。試校核吊車梁的強(qiáng)度。n【解

7、】(1) 荷載分解n將荷載p沿梁橫截面的y、z軸分解n py=pcos=30cos15kn=29knn pz=psin=30sin15kn=7.76knn(2) 內(nèi)力計算n吊車荷載p位于梁的跨中時,吊車梁處于最不利的受力狀態(tài),跨中截面的彎矩值最大,為危險截面。 圖11.3 n該截面上由py在xoy平面內(nèi)產(chǎn)生的最大彎矩為nmzmax= pyl/4 = 294/4knm=29knmn該截面上由pz在xoz平面內(nèi)產(chǎn)生的最大彎矩為nmymax= pzl/4 = 7.764/4 knm=7.76knmn(3) 強(qiáng)度校核n由型鋼表查得32a號工字鋼的抗彎截面系數(shù)wy和wz分別為n wy=70.8cm3=7

8、0.8103mm3n wz=692.2cm3=692.2103mm3n【例11.2】圖11.4所示矩形截面木檁條,兩端簡支在屋架上,跨度l=4m。承受由屋面?zhèn)鱽淼呢Q向均布荷載q=2kn/m。屋面的傾角=20,材料的許用應(yīng)力=10mpa。試選擇該檁條的截面尺寸。n【解】(1) 荷載分解n荷載q與y軸間的夾角=20,將均布荷載q沿截面對稱軸y、z分解,得n qy=qcos=2cos20kn/mn=1.88kn/mn qz=qsin=2sin20kn/mn=0.68kn/m圖11.4 n(2) 內(nèi)力計算n檁條在qy和qz單獨作用下,最大彎矩均發(fā)生在跨中截面,其值分別為nmzmax= qyl2/8 =

9、 1.8842/8knm=3.76knmnmymax= qzl2/8 = 0.6842/8knm=1.36knmn(3) 選擇截面尺寸n根據(jù)式(12.4),檁條的強(qiáng)度條件為n mzmax/wz + mymax/wy n上式中包含有wz和wy兩個未知數(shù)?,F(xiàn)設(shè) wz/wy = h/b=1.5,代入上式,得n 3.76106/1.5wy + 1.36106/wy 10n wy387103mm3n由 wy= hb2/6 = 1.5b3/6 387103n解得 b115.68mmn為便于施工,取截面尺寸b=120mm,則nh=1.5b=1.5120mm=180mmn選用120mm180mm的矩形截面。1

10、1.3 偏心壓縮(拉伸)偏心壓縮(拉伸)n圖11.5(a)所示的柱子,荷載p的作用線與柱的軸線不重合,稱為偏心力,其作用線與柱軸線間的距離e稱為偏心距。偏心力p通過截面一根形心主軸時,稱為單向偏心受壓。n(1) 荷載簡化和內(nèi)力計算n將偏心力p向截面形心平移,得到一個通過柱軸線的軸向壓力p和一個力偶矩m=pe的力偶,如圖11.5(b)所示。n橫截面m-n上的內(nèi)力為軸力n和彎矩mz,其值為n n=p mz=pe11.3.1 單向偏心壓縮(拉伸)單向偏心壓縮(拉伸)圖11.5 n(2) 應(yīng)力計算n對于該橫截面上任一點k(圖11.6),由軸力n所引起的正應(yīng)力為n=- n/a n由彎矩mz所引起的正應(yīng)力

11、為n=- mzy/iz n根據(jù)疊加原理,k點的總應(yīng)力為n=+=- n/a - mzy/iz圖11.6 n(3) 強(qiáng)度條件n從圖11.6(a)中可知:最大壓應(yīng)力發(fā)生在截面與偏心力p較近的邊線n-n線上;最大拉應(yīng)力發(fā)生在截面與偏心力p較遠(yuǎn)的邊線m-m線上。其值分別為nmin=ymax=- p/a - mz/wz nmax=lmax=- p/a + mz/wz n截面上各點均處于單向應(yīng)力狀態(tài),所以單向偏心壓縮的強(qiáng)度條件為nmin=ymax=- p/a - mz/wzynmax=lmax=- p/a + mz/wz ln(4) 討論n下面來討論當(dāng)偏心受壓柱是矩形截面時,截面邊緣線上的最大正應(yīng)力和偏心距

12、e之間的關(guān)系。n圖12.6(a)所示的偏心受壓柱,截面尺寸為bh,a=bh,wz= bh2/6 ,mz=pe,將各值代入得nmax=- p/bh +pe/bh2/6 =- p/bh(1- 6e/h)n邊緣m-m上的正應(yīng)力max的正負(fù)號,由上式中(1- 6e/h )的符號決定,可出現(xiàn)三種情況:n 當(dāng) 6e/h 1,即e1,即e h/6 時,max為拉應(yīng)力。截面部分受拉,部分受壓,應(yīng)力分布如圖11.7(c)所示。圖11.7 n【例11.3】圖11.8所示矩形截面柱,屋架傳來的壓力p1=100kn,吊車梁傳來的壓力p2=50kn,p2的偏心距e=0.2m。已知截面寬b=200mm,試求:n(1) 若

13、h=300mm,則柱截面中的最大拉應(yīng)力和最大壓應(yīng)力各為多少?n(2) 欲使柱截面不產(chǎn)生拉應(yīng)力,截面高度h應(yīng)為多少?在確定的h尺寸下,柱截面中的最大壓應(yīng)力為多少?n【解】(1) 內(nèi)力計算n將荷載向截面形心簡化,柱的軸向壓力為nn=p1+p2=(100+50)kn=150kn圖11.8 n截面的彎矩為nmz=p2e=500.2knm=10knmn(2) 計算lmax和ymaxn由式(12.6),得n lmax=- p/a + mz/wz =(-2.5+3.33)mpa=0.83mpan ymax= -p/a - mz/wz =(-2.5-3.33)mpa=-5.83mpan(3) 確定h和計算ym

14、axn欲使截面不產(chǎn)生拉應(yīng)力,應(yīng)滿足lmax0,即n - p/a + mz/wz 0n - 150103/200h + 10106/ 200h2/6 0n則 h400mmn取 h=400mmn當(dāng)h=400mm時,截面的最大壓應(yīng)力為nymax=- p/a - mz/wz n=(-1.875-1.875)mpa=-3.75mpan對于工程中常見的另一類構(gòu)件,除受軸向荷載外,還有橫向荷載的作用,構(gòu)件產(chǎn)生彎曲與壓縮的組合變形。 n【例11.4】圖11.9(a)所示的懸臂式起重架,在橫梁的中點d作用集中力p=15.5kn,橫梁材料的許用應(yīng)力=170mpa。試按強(qiáng)度條件選擇橫梁工字鋼的型號(自重不考慮)。n

15、【解】(1) 計算橫梁的外力n橫梁的受力圖如圖11.9(b)所示。為了計算方便,將拉桿bc的作用力nbc分解為nx和ny兩個分力。由平衡方程解得n ry=ny= p/2 =7.75knn rx=nx=nycot=7.75 3.4/1.5 kn=17.57kn圖11.9n(2) 計算橫梁的內(nèi)力n橫梁在ry、p和ny的作用下產(chǎn)生平面彎曲,橫梁中點截面d的彎矩最大,其值為nmmax= pl/4 = 15.53.4/4 knm=13.18knmn橫梁在rx和nx作用下產(chǎn)生軸向壓縮,各截面的軸力都相等,其值為nn=rx=17.57knn(3) 選擇工字鋼型號n由式(12.7),有nymax=- n/a

16、- mmax/wzn由于式中a和wz都是未知的,無法求解。因此,可先不考慮軸力n的影響,僅按彎曲強(qiáng)度條件初步選擇工字鋼型號,再按照彎壓組合變形強(qiáng)度條件進(jìn)行校核。由n max= mmax/wz n得wz mmax/ = 77.5103mm3=77.5cm3n查型鋼表,選擇14號工字鋼,wz=102cm3,a=21.5cm2。n根據(jù)式(12.7)校核,有nymax =- n/a - mmax/wz=137mpan結(jié)果表明,強(qiáng)度足夠,橫梁選用14號工字鋼。若強(qiáng)度不夠,則還需重新選擇。n當(dāng)偏心壓力p的作用線與柱軸線平行,但不通過橫截面任一形心主軸時,稱為雙向偏心壓縮。n如圖11.10(a)所示,偏心壓

17、力p至z軸的偏心距為ey,至y軸的偏心距為ez。11.3.2 雙向偏心壓縮(拉伸)雙向偏心壓縮(拉伸)圖11.10n (1) 荷載簡化和內(nèi)力計算n將壓力p向截面的形心o簡化,得到一個軸向壓力p和兩個附加力偶矩mz、my(圖11.10(b),其中nmz=pey,my=pezn可見,雙向偏心壓縮就是軸向壓縮和兩個相互垂直的平面彎曲的組合。n由截面法可求得任一截面abcd上的內(nèi)力為nn=p,mz=pey,my=pezn (2) 應(yīng)力計算n對于該截面上任一點k(圖11.10(c),由軸力n所引起的正應(yīng)力為n=- n/a n由彎矩mz所引起的正應(yīng)力為n=- mzy/iz n由彎矩my所引起的正應(yīng)力為n=- myz/iy n根據(jù)疊加原理,k點的總應(yīng)力為n=+=- n/a - mzy/iz - myz/iyn (3) 強(qiáng)度條件n由圖11.10(c)可見,最大壓應(yīng)力min發(fā)生在c點,最大拉應(yīng)力max發(fā)生在a點,其值為nmin=ymax=- p/a - mz/wz - my/wy nmax=lmax=- p/a + mz/wz+ my/wyn危險點a、c均處于單向應(yīng)力狀態(tài),所以強(qiáng)度條件為nmin=ymax=- p/a - m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論