




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1Chapter Overview第1頁/共26頁2Chapter 6 EigenvaluesChapter 6 Eigenvalues We consider the problem of factoring an n n matrix A into a product of the form XDX-1, where D is diagonal; We will give a necessary and sufficient condition for the existence of such a factorization and look at a number of example
2、s.第2頁/共26頁3 If 1, 2, , k are distinct eigenvalues of an n n matrix A with corresponding eigenvectors x1, x2, , xk, then x1, x2, , xk are linearly independent.6.3 Diagonalization6.3 Diagonalization第3頁/共26頁4Let r = dim(Span(x1, x2, xk), and assume that r k.( Implies that there are at most r linearly i
3、ndependent vectors in x1, x2, xk ). Assume that x1, x2, xr are linearly independent without loss of generality.Since x1, x2, xr, xr+1 are linearly dependent, there exists scalars c1, , cr, cr+1 not all zeros such thatc1x1+ + crxr + cr+1xr+1 = 0(1)6.3 Diagonalization6.3 Diagonalization第4頁/共26頁5(2)Not
4、e that cr+1 cannot be 0 (if cr+1 =0, then x1, , , xr are l.d.). So cr+1xr+1 0, and hence c1, , , cr cannot all be 0.Multiplying both sides of (1) by A, we havec1Ax1+ + crAxr + cr+1Axr+1 = 0 c11x1+ + crrxr + cr+1r+1xr+1 = 0.Multiplying (1) by r+1 and subtracting it from (2), we obtainc1(1 r+1)x1+ + c
5、r(r r+1)xr = 0.6.3 Diagonalization6.3 Diagonalization第5頁/共26頁6Since 1, 2, , k are distinct eigenvalues, then x1, , , xr becomes linearly dependent.So it is a contradiction to the assumption thatr = dim Span(x1, , , xk) k.Hence r = k and x1, , , xk are linearly independent.6.3 Diagonalization6.3 Diag
6、onalization第6頁/共26頁7An n n matrix A is said to be if there exists a nonsingular matrix X and a diagonal matrix D such thatX-1AX = Dwe say that X A. If A is diagonalizable by X, the column vectors of X areeigenvectors of A, and the diagonal elements of D arethe eigenvalues of A. The diagonalizing mat
7、rix X is not unique.6.3 Diagonalization6.3 Diagonalization第7頁/共26頁86.3 Diagonalization6.3 DiagonalizationAn n n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.第8頁/共26頁9Suppose that A has n linearly independent eigenvectors x1, x2 , , xn . Let i be the eigenvalue
8、of A corresponding to xi for each i (some of the is may be equal). Let X = (x1, x2, , , xn), then jxj is the jth column vector of AX. Therefore,1211221212(,)(,)(,)xxxxxxx xxnnnnnAXAAAXD6.3 Diagonalization6.3 DiagonalizationSince X has n linearly independent column vectors, it follows that X is nonsi
9、ngular and hence.1DXAX第9頁/共26頁10#Conversely, suppose that A is diagonalizable, then there exists a nonsingular matrix X such that AX = XD.If x1, x2, , , xn are the column vectors of X, thenThus, for each j, j is an eigenvalue of A and xj ( 0) is an eigenvector belonging to j.Since X is nonsingular,
10、A has n linearly independent engienvectors.6.3 Diagonalization6.3 Diagonalization()xxjjjjjjAd第10頁/共26頁11 If A is diagonalizable, then the column vectors of the diagonalizing matrix X areeigenvectors of A the diagonal elements of D are the correspondingeigenvalues of A The diagonalizing matrix X is n
11、ot unique. Reorderingthe columns of a given diagonalizing matrix X ormultiplying them by nonzero scalars will produce anew diagonalizing matrix.6.3 Diagonalization6.3 Diagonalization第11頁/共26頁12 If A is n n and A has n distinct eigenvalues, then Ahas n linearly independent eigenvectors, and henceA is
12、 diagonalizable. If the eigenvalues are not distinct, then A may or maynot be diagonalizable depending on whether A has nlinearly independent eigenvectors. A has n linearly independent eigenvectors ifdimension of N(A- I) = multiplicity of for all repeated eigenvalues.6.3 Diagonalization6.3 Diagonali
13、zation第12頁/共26頁13 If A is diagonalizable, then A can be factored into a product XDX-1. Therefore, A2 = (XDX1)(XDX1) = XD2X1in general,6.3 Diagonalization6.3 Diagonalization111200kkkkknAXD XXX第13頁/共26頁14Factor the matrix A into XDX-1, where D is diagonal:6.3 Diagonalization6.3 Diagonalization2325A第14
14、頁/共26頁15The eigenvalues of A are 1=1 and 2= 4. Corresponding to 1 and 2, we have eigenvectors x1=(3,1)T and x2=(1,2)T. Let3 11 2Xthen1121233 1101 3251 2045XAXand1213 11023551 204132555XDXA6.3 Diagonalization6.3 Diagonalization第15頁/共26頁16Factor the matrix A into XDX-1, where D is diagonal:6.3 Diagona
15、lization6.3 Diagonalization3122 02211A第16頁/共26頁176.3 Diagonalization6.3 DiagonalizationFactor the matrix A into XDX-1, where D is diagonal:1 10 1A第17頁/共26頁18 If an n n matrix A has fewer than n linearly independent eigenvectors, we say that A is e. A defective matrix is not diagonalizable.The matrix
16、has two distinct eigenvalues 1 = 4, 2 = 3 = 2. The eigenspace of 1 is Span(e2) and the eigenspace of 2 and 3 is Span(e3). A is a defective matrix.6.3 Diagonalization6.3 Diagonalization2 0 00 4 01 0 2A第18頁/共26頁196.3 Diagonalization6.3 Diagonalization Consider the eigenvectors of the matrices200200040
17、and140102362AB 第19頁/共26頁20eigenvalues: 1=4, 2= 3=2eigenspaces: 1:e2, 2, 3:e3 =2 has geometric multiplicity 1 1=4, 2= 3=2 1:x1=(0,1,3)T, 2, 3:x2=(2,1,0)T, e3 geometric multiplicity 26.3 Diagonalization6.3 Diagonalization第20頁/共26頁21 Given a scalar a, the exponential ea can be expressed in terms of a p
18、ower series Given an n n matrix A, we can define the matrix exponential eA in terms of the convergent power series In case of a diagonal matrix:6.3 Diagonalization6.3 Diagonalization231112!3!aeaaa 23112!3!AeIAAA12nD1211111lim2!1!lim1!nDmmmkkmmknkeIDDDmekek第21頁/共26頁22 If the n n matrix A is diagonali
19、zable, then2311112!3!ADeXIDDDXXe X1for1,2,.kkAXD Xkcompute eA for2613A11211110131,0( 2,1) ,( 3,1)1223013326611121 320TTADAXDXeeeeXe Xeee xx6.3 Diagonalization6.3 Diagonalization第22頁/共26頁23 The matrix exponential can be applied to the The solution to the initial value problem is simply If A is a diagonal matrix:6.3 Diagonalization6.3 Dia
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國食品及飼料添加劑行業(yè)運營狀況及發(fā)展趨勢分析報告
- 2025-2030年中國風(fēng)力發(fā)電機組葉片裝置市場發(fā)展趨勢與十三五規(guī)劃研究報告
- 2025-2030年中國防火玻璃產(chǎn)業(yè)前景展望及未來投資規(guī)劃研究報告
- 2025-2030年中國鑄造粘結(jié)材料行業(yè)競爭格局及前景趨勢分析報告
- 2025-2030年中國金屬船舶市場前景規(guī)劃及發(fā)展趨勢預(yù)測報告
- 2025-2030年中國道路護欄行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國補血保健品市場十三五規(guī)劃與發(fā)展策略分析報告
- 2025-2030年中國脫臭餾出物的分離提取產(chǎn)物行業(yè)運行現(xiàn)狀及前景規(guī)劃分析報告
- 2025-2030年中國納米二氧化鈦市場運行狀況及發(fā)展趨勢預(yù)測報告
- 2024年個人信用報告(個人簡版)樣本(帶水印-可編輯)
- 數(shù)理統(tǒng)計考試試卷及答案解析
- 排水溝施工合同電子版(精選5篇)
- 高警示藥物處方審核要點
- 2022年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院單招語文模擬試題及答案
- 《酒店品牌建設(shè)與管理》課程教學(xué)大綱
- TSG11-2020 鍋爐安全技術(shù)規(guī)程
- 大氣商務(wù)企業(yè)培訓(xùn)之團隊合作的重要性PPT模板
- Opera、綠云、西軟、中軟酒店管理系統(tǒng)對比分析
- 楚才辦公室裝修設(shè)計方案20140315
- 人教版八年級(上冊)物理習(xí)題全集(附答案)
評論
0/150
提交評論