![復(fù)合函數(shù)求導(dǎo)練習(xí)題經(jīng)典實(shí)用_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/30/6aa92dbd-18c7-4300-92be-407c987bdb9a/6aa92dbd-18c7-4300-92be-407c987bdb9a1.gif)
![復(fù)合函數(shù)求導(dǎo)練習(xí)題經(jīng)典實(shí)用_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/30/6aa92dbd-18c7-4300-92be-407c987bdb9a/6aa92dbd-18c7-4300-92be-407c987bdb9a2.gif)
![復(fù)合函數(shù)求導(dǎo)練習(xí)題經(jīng)典實(shí)用_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/30/6aa92dbd-18c7-4300-92be-407c987bdb9a/6aa92dbd-18c7-4300-92be-407c987bdb9a3.gif)
![復(fù)合函數(shù)求導(dǎo)練習(xí)題經(jīng)典實(shí)用_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/30/6aa92dbd-18c7-4300-92be-407c987bdb9a/6aa92dbd-18c7-4300-92be-407c987bdb9a4.gif)
![復(fù)合函數(shù)求導(dǎo)練習(xí)題經(jīng)典實(shí)用_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-10/30/6aa92dbd-18c7-4300-92be-407c987bdb9a/6aa92dbd-18c7-4300-92be-407c987bdb9a5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、復(fù)合函數(shù)求導(dǎo)練習(xí)題一選擇題(共26小題)1設(shè),則f(2)=()abcd2設(shè)函數(shù)f(x)=g(x)+x+lnx,曲線y=g(x)在點(diǎn)(1,g(1)處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1)處的切線方程為()ay=4xby=4x8cy=2x+2d3下列式子不正確的是()a(3x2+cosx)=6xsinxb(lnx2x)=ln2c(2sin2x)=2cos2xd()=4設(shè)f(x)=sin2x,則=()abc1d15函數(shù)y=cos(2x+1)的導(dǎo)數(shù)是()ay=sin(2x+1)by=2xsin(2x+1)cy=2sin(2x+1)dy=2xsin(2x+1)6下列導(dǎo)數(shù)運(yùn)算正確的
2、是()a(x+)=1+b(2x)=x2x1c(cosx)=sinxd(xlnx)=lnx+17下列式子不正確的是()a(3x2+xcosx)=6x+cosxxsinxb(sin2x)=2cos2xcd8已知函數(shù)f(x)=e2x+13x,則f(0)=()a0b2c2e3de39函數(shù)的導(dǎo)數(shù)是()abcd10已知函數(shù)f(x)=sin2x,則f(x)等于()acos2xbcos2xcsinxcosxd2cos2x11y=esinxcosx(sinx),則y(0)等于()a0b1c1d212下列求導(dǎo)運(yùn)算正確的是()abc(2x+3)2)=2(2x+3)d(e2x)=e2x13若,則函數(shù)f(x)可以是()
3、abcdlnx14設(shè),則f2013(x)=()a22012(cos2xsin2x)b22013(sin2x+cos2x)c22012(cos2x+sin2x)d22013(sin2x+cos2x)15設(shè)f(x)=cos22x,則=()a2bc1d216函數(shù)的導(dǎo)數(shù)為()abcd17函數(shù)y=cos(1+x2)的導(dǎo)數(shù)是()a2xsin(1+x2)bsin(1+x2)c2xsin(1+x2)d2cos(1+x2)18函數(shù)y=sin(x)的導(dǎo)數(shù)為()acos(+x)bcos(x)csin(x)dsin(x+)19已知函數(shù)f(x)在r上可導(dǎo),對(duì)任意實(shí)數(shù)x,f'(x)f(x);若a為任意的正實(shí)數(shù),下
4、列式子一定正確的是()af(a)eaf(0)bf(a)f(0)cf(a)f(0)df(a)eaf(0)20函數(shù)y=sin(2x2+x)導(dǎo)數(shù)是()ay=cos(2x2+x)by=2xsin(2x2+x)cy=(4x+1)cos(2x2+x)dy=4cos(2x2+x)21函數(shù)f(x)=sin2x的導(dǎo)數(shù)f(x)=()a2sinxb2sin2xc2cosxdsin2x22函數(shù)的導(dǎo)函數(shù)是()af'(x)=2e2xbcd23函數(shù)的導(dǎo)數(shù)為()abcd24y=sin(34x),則y=()asin(34x)b3cos(4x)c4cos(34x)d4cos(34x)25下列結(jié)論正確的是()a若,b若y=
5、cos5x,則y=sin5xc若y=sinx2,則y=2xcosx2d若y=xsin2x,則y=2xsin2x26函數(shù)y=的導(dǎo)數(shù)是()abcd二填空題(共4小題)27設(shè)y=f(x)是可導(dǎo)函數(shù),則y=f()的導(dǎo)數(shù)為28函數(shù)y=cos(2x2+x)的導(dǎo)數(shù)是29函數(shù)y=ln的導(dǎo)數(shù)為30若函數(shù),則的值為參考答案與試題解析一選擇題(共26小題)1(2015春拉薩校級(jí)期中)設(shè),則f(2)=()abcd【解答】解:f(x)=ln,令u(x)=,則f(u)=lnu,f(u)=,u(x)=,由復(fù)合函數(shù)的導(dǎo)數(shù)公式得:f(x)=,f(2)=故選b2(2014懷遠(yuǎn)縣校級(jí)模擬)設(shè)函數(shù)f(x)=g(x)+x+lnx,曲線
6、y=g(x)在點(diǎn)(1,g(1)處的切線方程為y=2x+1,則曲線y=f(x)在點(diǎn)(1,f(1)處的切線方程為()ay=4xby=4x8cy=2x+2d【解答】解:由已知g(1)=2,而,所以f(1)=g(1)+1+1=4,即切線斜率為4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲線y=f(x)在點(diǎn)(1,f(1)處的切線方程為y4=4(x1),即y=4x,故選a3(2014春永壽縣校級(jí)期中)下列式子不正確的是()a(3x2+cosx)=6xsinxb(lnx2x)=ln2c(2sin2x)=2cos2xd()=【解答】解:由復(fù)合函數(shù)的求導(dǎo)法則對(duì)于選項(xiàng)a,(3x2+cosx)=6x
7、sinx成立,故a正確對(duì)于選項(xiàng)b,成立,故b正確對(duì)于選項(xiàng)c,(2sin2x)=4cos2x2cos2x,故c不正確對(duì)于選項(xiàng)d,成立,故d正確故選c4(2014春晉江市校級(jí)期中)設(shè)f(x)=sin2x,則=()abc1d1【解答】解:因?yàn)閒(x)=sin2x,所以f(x)=(2x)cos2x=2cos2x則=2cos(2×)=1故選d5(2014秋阜城縣校級(jí)月考)函數(shù)y=cos(2x+1)的導(dǎo)數(shù)是()ay=sin(2x+1)by=2xsin(2x+1)cy=2sin(2x+1)dy=2xsin(2x+1)【解答】解:函數(shù)的導(dǎo)數(shù)y=sin(2x+1)(2x+1)=2sin(2x+1),故
8、選:c6(2014春福建月考)下列導(dǎo)數(shù)運(yùn)算正確的是()a(x+)=1+b(2x)=x2x1c(cosx)=sinxd(xlnx)=lnx+1【解答】解:根據(jù)導(dǎo)數(shù)的運(yùn)算公式可得:a,(x+)=1,故a錯(cuò)誤b,(2x)=lnx2x,故b錯(cuò)誤c,(cosx)=sinx,故c錯(cuò)誤d(xlnx)=lnx+1,正確故選:d7(2013春海曙區(qū)校級(jí)期末)下列式子不正確的是()a(3x2+xcosx)=6x+cosxxsinxb(sin2x)=2cos2xcd【解答】解:因?yàn)椋?x2+xcosx)=6x+cosxxsinx,所以選項(xiàng)a正確;(sin2x)=2cos2x,所以選項(xiàng)b正確;,所以c正確;,所以d不
9、正確故選d8(2013春江西期中)已知函數(shù)f(x)=e2x+13x,則f(0)=()a0b2c2e3de3【解答】解:f(x)=2e2x+13,f(0)=2e3故選c9(2013春黔西南州校級(jí)月考)函數(shù)的導(dǎo)數(shù)是()abcd【解答】解:函數(shù),y=3cos(3x+)×3=,故選b10(2013春東莞市校級(jí)月考)已知函數(shù)f(x)=sin2x,則f(x)等于()acos2xbcos2xcsinxcosxd2cos2x【解答】解:由f(x)=sin2x,則f(x)=(sin2x)=(cos2x)(2x)=2cos2x所以f(x)=2cos2x故選d11(2013秋惠農(nóng)區(qū)校級(jí)月考)y=esinx
10、cosx(sinx),則y(0)等于()a0b1c1d2【解答】解:y=esinxcosx(sinx),y=(esinx)cosx(sinx)+esinx(cosx)(sinx)+esinx(cosx)(sinx)=esinxcos2x(sinx)+esinx(sin2x)+esinx(cos2x)y(0)=0+0+1=1故選b12(2012秋珠海期末)下列求導(dǎo)運(yùn)算正確的是()abc(2x+3)2)=2(2x+3)d(e2x)=e2x【解答】解:因?yàn)?,所以選項(xiàng)a不正確;,所以選項(xiàng)b正確;(2x+3)2)=2(2x+3)(2x+3)=4(2x+3),所以選項(xiàng)c不正確;(e2x)=e2x(2x)=
11、2e2x,所以選項(xiàng)d不正確故選b13(2012秋朝陽區(qū)期末)若,則函數(shù)f(x)可以是()abcdlnx【解答】解:;所以滿足的f(x)為故選a14(2012秋廬陽區(qū)校級(jí)月考)設(shè),則f2013(x)=()a22012(cos2xsin2x)b22013(sin2x+cos2x)c22012(cos2x+sin2x)d22013(sin2x+cos2x)【解答】解:f0(x)=sin2x+cos2x,f1(x)=2(cos2xsin2x),f2(x)=22(sin2xcos2x),f3(x)=23(cos2x+sin2x),f4(x)=24(sin2x+cos2x),通過以上可以看出:fn(x)滿
12、足以下規(guī)律,對(duì)任意nn,f2013(x)=f503×4+1(x)=22012f1(x)=22013(cos2xsin2x)故選:b15(2011潛江校級(jí)模擬)設(shè)f(x)=cos22x,則=()a2bc1d2【解答】解:f(x)=cos22x=2sin4x故選d16(2011秋平遙縣校級(jí)期末)函數(shù)的導(dǎo)數(shù)為()abcd【解答】解:=故選d17(2011春南湖區(qū)校級(jí)月考)函數(shù)y=cos(1+x2)的導(dǎo)數(shù)是()a2xsin(1+x2)bsin(1+x2)c2xsin(1+x2)d2cos(1+x2)【解答】解:y=sin(1+x2)(1+x2)=2xsin(1+x2)故選c18(2011春瑞
13、安市校級(jí)月考)函數(shù)y=sin(x)的導(dǎo)數(shù)為()acos(+x)bcos(x)csin(x)dsin(x+)【解答】解:函數(shù)y=sin(x)可看成y=sinu,u=x復(fù)合而成且yu=(sinu)=cosu,函數(shù)y=sin(x)的導(dǎo)數(shù)為y=yuux=cos(x)=sin(x)=sin(+x)故答案選d19(2011春龍港區(qū)校級(jí)月考)已知函數(shù)f(x)在r上可導(dǎo),對(duì)任意實(shí)數(shù)x,f'(x)f(x);若a為任意的正實(shí)數(shù),下列式子一定正確的是()af(a)eaf(0)bf(a)f(0)cf(a)f(0)df(a)eaf(0)【解答】解:對(duì)任意實(shí)數(shù)x,f(x)f(x),令f(x)=1,則f(x)=0,
14、滿足題意顯然選項(xiàng)a成立故選a20(2010永州校級(jí)模擬)函數(shù)y=sin(2x2+x)導(dǎo)數(shù)是()ay=cos(2x2+x)by=2xsin(2x2+x)cy=(4x+1)cos(2x2+x)dy=4cos(2x2+x)【解答】解:設(shè)y=sinu,u=2x2+x,則y=cosu,u=4x+1,y=(4x+1)cosu=(4x+1)cos(2x2+x),故選c21(2010祁陽縣校級(jí)模擬)函數(shù)f(x)=sin2x的導(dǎo)數(shù)f(x)=()a2sinxb2sin2xc2cosxdsin2x【解答】解:將y=sin2x寫成,y=u2,u=sinx的形式對(duì)外函數(shù)求導(dǎo)為y=2u,對(duì)內(nèi)函數(shù)求導(dǎo)為u=cosx,故可以
15、得到y(tǒng)=sin2x的導(dǎo)數(shù)為y=2ucosx=2sinxcosx=sin2x故選d22(2010春朝陽區(qū)期末)函數(shù)的導(dǎo)函數(shù)是()af'(x)=2e2xbcd【解答】解:對(duì)于函數(shù),對(duì)其求導(dǎo)可得:f(x)=;故選c23(2009春房山區(qū)期中)函數(shù)的導(dǎo)數(shù)為()abcd【解答】解:令y=3sint,t=2x,則y=(3sint)(2x)=3cos(2x)2=,故選a24(2009春瑞安市校級(jí)期中)y=sin(34x),則y=()asin(34x)b3cos(4x)c4cos(34x)d4cos(34x)【解答】解:由于y=sin(34x),則y=cos(34x)×(34x)=4cos(
16、34x)故選d25(2006春珠海期末)下列結(jié)論正確的是()a若,b若y=cos5x,則y=sin5xc若y=sinx2,則y=2xcosx2d若y=xsin2x,則y=2xsin2x【解答】解:函數(shù)的導(dǎo)數(shù)為,a錯(cuò)誤 函數(shù)y=cos5x的導(dǎo)數(shù)為:y=5sin5x,b錯(cuò)誤函數(shù)y=sinx2的導(dǎo)數(shù)為:y=2xcosx,c正確函數(shù)y=xsin2x的導(dǎo)數(shù)為:y=sin2x+2xcos2x,d錯(cuò)誤故選c26函數(shù)y=的導(dǎo)數(shù)是()abcd【解答】解:由復(fù)合函數(shù)的求導(dǎo)法則可得,ln(x2+1)ln2=(1+x2)ln2=ln2故選a二填空題(共4小題)27(2013春巨野縣校級(jí)期中)設(shè)y=f(x)是可導(dǎo)函數(shù),則y=f()的導(dǎo)數(shù)為y=f()【解答】解:設(shè)y=f(u
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度國際貿(mào)易合同終止與解除法律咨詢合同
- 2025年度智能化家居購置貸款合同
- 2025年度智能辦公空間租賃合同(含設(shè)施設(shè)備維護(hù)服務(wù))
- 2025年度國際貨物貿(mào)易跨境支付解決方案合同
- 2025年度紅磚行業(yè)標(biāo)準(zhǔn)化采購合同范本
- 2025年度信息技術(shù)服務(wù)外包合同終止及知識(shí)產(chǎn)權(quán)協(xié)議
- 2025年度教育培訓(xùn)機(jī)構(gòu)合作合同作廢證明范本
- 二零二四年度企業(yè)餐廚垃圾清運(yùn)及處理服務(wù)合同3篇
- 2025年度合同范本打印機(jī)維修保養(yǎng)服務(wù)合同
- 2025年度鍋爐節(jié)能技術(shù)研發(fā)與應(yīng)用合同
- 《梅大高速茶陽路段“5·1”塌方災(zāi)害調(diào)查評(píng)估報(bào)告》專題警示學(xué)習(xí)
- 2024年09月北京中信銀行北京分行社會(huì)招考(917)筆試歷年參考題庫附帶答案詳解
- 《大健康解讀》課件
- 2024年公司領(lǐng)導(dǎo)在新年動(dòng)員會(huì)上的講話樣本(3篇)
- 電力系統(tǒng)分析(郝亮亮)
- 改善護(hù)理服務(wù)行動(dòng)計(jì)劃方案
- 常州市2023-2024學(xué)年八年級(jí)上學(xué)期期末地理試卷(含答案解析)
- 道路安全教育課件
- 2023年浙江省衢州市中考語文試題(含答案解析)
- 《物流市場營銷環(huán)境》課件
- 網(wǎng)咖成本預(yù)算明細(xì)表
評(píng)論
0/150
提交評(píng)論