華師大九年級(jí)上 相似三角形的性質(zhì)_第1頁(yè)
華師大九年級(jí)上 相似三角形的性質(zhì)_第2頁(yè)
華師大九年級(jí)上 相似三角形的性質(zhì)_第3頁(yè)
華師大九年級(jí)上 相似三角形的性質(zhì)_第4頁(yè)
華師大九年級(jí)上 相似三角形的性質(zhì)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo)1 1、在理解相似三角形、在理解相似三角形特征特征的基礎(chǔ)上,的基礎(chǔ)上,掌握相似三角形對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)掌握相似三角形對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、周長(zhǎng)、面積的比等性質(zhì)應(yīng)角平分線、周長(zhǎng)、面積的比等性質(zhì). .2 2、通過實(shí)踐體會(huì)相似三角形的性質(zhì),、通過實(shí)踐體會(huì)相似三角形的性質(zhì),會(huì)用性質(zhì)解決相關(guān)的問題會(huì)用性質(zhì)解決相關(guān)的問題. .(1 1)什么叫相似三角形?)什么叫相似三角形? 對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例的三角形的三角形, ,叫做叫做相似三角形相似三角形. .(2 2)如何判定兩個(gè)三角形相似?)如何判定兩個(gè)三角形相似??jī)蓚€(gè)角對(duì)應(yīng)相等;兩個(gè)角對(duì)應(yīng)相等;兩邊對(duì)應(yīng)成

2、比例,且夾角相等;兩邊對(duì)應(yīng)成比例,且夾角相等;三邊對(duì)應(yīng)成比例三邊對(duì)應(yīng)成比例.abca/b/c/ 相似三角形的對(duì)應(yīng)角相似三角形的對(duì)應(yīng)角_相似三角形的對(duì)應(yīng)邊相似三角形的對(duì)應(yīng)邊_想一想想一想: 它們還有哪些性質(zhì)呢它們還有哪些性質(zhì)呢?(3)相似三角形有何特征?)相似三角形有何特征?一個(gè)三角形有三條重要線段一個(gè)三角形有三條重要線段:_如果如果兩個(gè)三角形相似兩個(gè)三角形相似,那么那么這些對(duì)應(yīng)線段有什么關(guān)系呢?這些對(duì)應(yīng)線段有什么關(guān)系呢?情境引入情境引入高、中線、角平分線高、中線、角平分線acba b c ddcbaabc21相似比為_daad對(duì)應(yīng)高的比21(1 1)acba b c ddcbaabc21相似比

3、為_daad對(duì)應(yīng)中線的比21(2 2)acba b c ddcbaabc21相似比為_daad對(duì)應(yīng)角平分線的比21(3 3)18.3.9 18.3.9 探索新知探索新知兩角對(duì)應(yīng)相等兩角對(duì)應(yīng)相等,兩三角形相似兩三角形相似?dbaabdcbbc、daad、kcbaabc相似嗎與邊上的高分別為其中相似比為如圖問題,:1)( ,:cbaabc因?yàn)榻庖阎阎运詁=b( )相似三角形的對(duì)應(yīng)角相等相似三角形的對(duì)應(yīng)角相等 .90bdaadb又.dbaabd所以( )相似三角形的性質(zhì)相似三角形的性質(zhì)18.3.9 18.3.9 探索新知探索新知?daaddbaabdcbbc、daad、kcbaabc等于什么

4、能否得到由邊上的高分別為其中相似比為如圖問題,:1所以所以(相似三角形的對(duì)應(yīng)邊成比例相似三角形的對(duì)應(yīng)邊成比例),dbaabd因?yàn)閐aadbaabk相似三角形的性質(zhì)相似三角形的性質(zhì)結(jié)論:結(jié)論:相似三角形對(duì)應(yīng)相似三角形對(duì)應(yīng)高的比等于相似比高的比等于相似比. .類似結(jié)論類似結(jié)論dcbadcbak._,daadcbbc、daad、kcbaabc則邊上的中線分別為其中相似比為如圖自主思考自主思考-:2問題結(jié)論:結(jié)論:相似三角形對(duì)應(yīng)相似三角形對(duì)應(yīng)中線中線的比等于相似比的比等于相似比. .acbcbaeek._,ebbecbaabc、ebbe、kcbaabc則的角平分線分別為其中相似比為如圖類似類似結(jié)論結(jié)論

5、自主思考自主思考-:3問題結(jié)論:結(jié)論:相似三角形對(duì)應(yīng)相似三角形對(duì)應(yīng)角的角的角平分線角平分線的比等于相似比的比等于相似比. .對(duì)應(yīng)高的比對(duì)應(yīng)高的比對(duì)應(yīng)中線的比對(duì)應(yīng)中線的比對(duì)應(yīng)角平分線的比對(duì)應(yīng)角平分線的比 相相似似三三角角形形都等于都等于相似比相似比.相似三角形的性質(zhì)相似三角形的性質(zhì)填一填填一填n1. 1.相似三角形對(duì)應(yīng)邊的比為相似三角形對(duì)應(yīng)邊的比為2323, ,那么那么相似比為相似比為_,_,對(duì)應(yīng)角的角平分線對(duì)應(yīng)角的角平分線的比為的比為_._.2 32 3n2 2兩個(gè)相似三角形的相似比為兩個(gè)相似三角形的相似比為0.250.25, , 則對(duì)應(yīng)高的比為則對(duì)應(yīng)高的比為_,_,對(duì)應(yīng)角的對(duì)應(yīng)角的角平分線的

6、比為角平分線的比為_. _. 0.250.254141n3 3兩個(gè)相似三角形對(duì)應(yīng)中線的比為兩個(gè)相似三角形對(duì)應(yīng)中線的比為 ,則相似比為則相似比為_,_,對(duì)應(yīng)高的比為對(duì)應(yīng)高的比為_ ._ .41問題:?jiǎn)栴}: 兩個(gè)相似三角形的兩個(gè)相似三角形的周長(zhǎng)比周長(zhǎng)比 會(huì)等于相似比嗎?會(huì)等于相似比嗎?相似三角形的性質(zhì)相似三角形的性質(zhì)圖中圖中(1)(2)(3)分別是邊長(zhǎng)為分別是邊長(zhǎng)為1、2、3的等邊三的等邊三角形,它們都相似嗎?角形,它們都相似嗎?(1)(2)(3)123用心觀察用心觀察(1)(1)與與(2)(2)的相似比的相似比=_,=_,(1)(1)與與(2)(2)的周長(zhǎng)比的周長(zhǎng)比=_=_(2)(2)與與(3)

7、(3)的相似比的相似比=_,=_,(2)(2)與與(3)(3)的周長(zhǎng)比的周長(zhǎng)比=_=_1 2結(jié)論:結(jié)論: 相似三角形的相似三角形的周長(zhǎng)比周長(zhǎng)比等于等于_相似比相似比(都(都相似)相似)2 31 22 3對(duì)應(yīng)高的比對(duì)應(yīng)高的比對(duì)應(yīng)中線的比對(duì)應(yīng)中線的比對(duì)應(yīng)角平分線的比對(duì)應(yīng)角平分線的比 周長(zhǎng)的比周長(zhǎng)的比 相相似似三三角角形形都等于都等于相似比相似比.相似三角形的性質(zhì)相似三角形的性質(zhì)問題問題:兩個(gè)相似三角形的兩個(gè)相似三角形的面積面積 之間有什么關(guān)系呢?之間有什么關(guān)系呢?相似三角形的性質(zhì)相似三角形的性質(zhì)用心觀察用心觀察1231 2當(dāng)相似比當(dāng)相似比k時(shí),面積比時(shí),面積比k2 (1)(2)(3)(1)(1)與

8、與(2)(2)的相似比的相似比=_,=_,(1)(1)與與(2)(2)的的面積面積比比=_=_(2)(2)與與(3)(3)的相似比的相似比=_,=_,(2)(2)與與(3)(3)的的面積面積比比=_=_1 42 34 9相似三角形相似三角形面積面積的比等于相似比的的比等于相似比的平方平方. .對(duì)應(yīng)高的比對(duì)應(yīng)高的比對(duì)應(yīng)中線的比對(duì)應(yīng)中線的比對(duì)應(yīng)角平分線的比對(duì)應(yīng)角平分線的比 周長(zhǎng)的比周長(zhǎng)的比 相相似似三三角角形形都等于都等于相似比相似比.面積的比等于相似比的平方面積的比等于相似比的平方相似三角形的性質(zhì)相似三角形的性質(zhì)1. 1.如果兩個(gè)三角形相似如果兩個(gè)三角形相似, ,相似比為相似比為35,35,則則

9、對(duì)應(yīng)角的角平分線的比等于對(duì)應(yīng)角的角平分線的比等于_._.2. 2.相似三角形對(duì)應(yīng)邊的比為相似三角形對(duì)應(yīng)邊的比為0.4,0.4,那么相似比為那么相似比為_,_,對(duì)應(yīng)角的角平分線的比為對(duì)應(yīng)角的角平分線的比為_,_,周長(zhǎng)的比為周長(zhǎng)的比為_,_,面積的比為面積的比為_._.3 5 0.40.4當(dāng)堂訓(xùn)練當(dāng)堂訓(xùn)練0.40.40.40.40.160.16當(dāng)堂當(dāng)堂訓(xùn)練訓(xùn)練3.3.把一個(gè)三角形變成和它相似的三角形,把一個(gè)三角形變成和它相似的三角形,(1 1)如果邊長(zhǎng)擴(kuò)大為原來(lái)的)如果邊長(zhǎng)擴(kuò)大為原來(lái)的5 5倍,那么面積擴(kuò)大為原來(lái)倍,那么面積擴(kuò)大為原來(lái)的的_倍。倍。(2 2)如果面積擴(kuò)大為原來(lái)的)如果面積擴(kuò)大為原來(lái)

10、的100100倍,那么邊長(zhǎng)擴(kuò)大為原倍,那么邊長(zhǎng)擴(kuò)大為原來(lái)的來(lái)的_倍。倍。3 3,兩個(gè)相似三角形的一對(duì)對(duì)應(yīng)邊分別是,兩個(gè)相似三角形的一對(duì)對(duì)應(yīng)邊分別是3535厘米和厘米和14 14 厘厘米,(米,(1 1)它們的周長(zhǎng)差)它們的周長(zhǎng)差6060厘米,這兩個(gè)三角形的周長(zhǎng)分厘米,這兩個(gè)三角形的周長(zhǎng)分別是別是_。(。(2 2)它們的面積之和是)它們的面積之和是5858平方平方厘米,這兩個(gè)三角形的面積分別是厘米,這兩個(gè)三角形的面積分別是_。25251010100cm100cm、40cm40cm50cm2、40cm23.如圖如圖,在正方形網(wǎng)格上有在正方形網(wǎng)格上有a1b1c1和和a2b2c2,這兩個(gè)三角形相似嗎,

11、這兩個(gè)三角形相似嗎?如果相似如果相似,求出求出a1b1c1和和a2b2c2的面積比的面積比.(第 3 題) 2 : 1解:相似解:相似因?yàn)橄嗨票仁且驗(yàn)橄嗨票仁撬悦娣e比是所以面積比是 4 : 1當(dāng)堂訓(xùn)練當(dāng)堂訓(xùn)練 (1)(1)adeade與與abcabc相似嗎?如果相似,相似嗎?如果相似, 求它們的相似比求它們的相似比. . abcde1 4 ._)3(abcadess(2) (2) adeade的周長(zhǎng)的周長(zhǎng)abcabc的周長(zhǎng)的周長(zhǎng)_._. 1 4 161例例1 1、如圖,、如圖,debcdebc, de = 1, bc = 4de = 1, bc = 4,例題賞析例題賞析例例2 2、如圖,在如

12、圖,在 abcdabcd中,若中,若e e是是abab的中點(diǎn),的中點(diǎn),則則(1)aef(1)aef與與 cdfcdf的相似比為的相似比為_._. (2) (2)若若 aefaef的的面積為面積為5 cm5 cm2 2, 則則 cdfcdf的面積為的面積為_._.bfedca例題賞析例題賞析cdaek 211 : 2,sscdfaef2)21(,scdf415.20cdfs20 cm2 例例3 3:已知:已知abc abc a a b b c c ,bdbd和和b b d d 分別是分別是abcabc和和a a b b c c 中線,且中線,且abab1010,a a b b 2 2,bdbd6

13、 6。求。求b b dd 的長(zhǎng)。的長(zhǎng)。解:解:abca b c b d 1.2答:答:b d 的長(zhǎng)為的長(zhǎng)為1.2。aba b bdb d 1026b d abcda b c d 例例4 4:已知:已知abcabcdefdef,bgbg、eheh分別是分別是abcabc和和 defdef的角平分線,的角平分線,bcbc6cm,ef6cm,ef4cm,bg4cm,bg4.8cm.4.8cm.求求eheh的長(zhǎng)。的長(zhǎng)。解:解: abcdef bc efbg eh6 44.8 eheh3.2(cm)答:答:eh的長(zhǎng)為的長(zhǎng)為3.2cm。agbcdefh例例5 5:如圖,:如圖,abcabcabcabc,它

14、們的周長(zhǎng)分別它們的周長(zhǎng)分別是是6060厘米和厘米和7272厘米,且厘米,且ab=15ab=15厘米,厘米,bc=24bc=24厘米。求:厘米。求:bcbc、acac、abab、acac。cbacba解:因?yàn)榻猓阂驗(yàn)閍bcabc abcabc所以所以abbcabbc6072又又 ab=15厘米厘米 bc=24厘米厘米 所以所以 ab=18厘米厘米 bc=20厘米厘米 故故 ac=601520=25(厘米)厘米)ac=721824=30(厘米)厘米) 1、相似三角形、相似三角形對(duì)應(yīng)邊成對(duì)應(yīng)邊成_,對(duì)應(yīng)角對(duì)應(yīng)角_. 2、相似三角形、相似三角形對(duì)應(yīng)邊上的高、對(duì)應(yīng)邊上的中線、對(duì)應(yīng)邊上的高、對(duì)應(yīng)邊上的中線、 對(duì)應(yīng)角平分線的比都等于對(duì)應(yīng)角平分線的比都等于_. 3、相似三角形、相似三角形周長(zhǎng)的比等于周長(zhǎng)的比等于_, 相似三角形面積的比等于相似三角形面積的比等于_. 課堂小結(jié)課堂小結(jié)相似比的平方相似比的平方相似三角形的性質(zhì)相似三角形的性質(zhì)相似多邊形相似多邊形也有同樣的也有同樣的結(jié)論結(jié)論1 1、已知

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論