下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、.導(dǎo)數(shù)的幾何意義教案教學(xué)目標(biāo)1了解平均變化率與割線斜率之間的關(guān)系;2理解曲線的切線的概念;3通過(guò)函數(shù)的圖像直觀地理解導(dǎo)數(shù)的幾何意義,并會(huì)用導(dǎo)數(shù)的幾何意義解題;教學(xué)重點(diǎn):曲線的切線的概念、切線的斜率、導(dǎo)數(shù)的幾何意義; 教學(xué)難點(diǎn):導(dǎo)數(shù)的幾何意義教學(xué)過(guò)程:一創(chuàng)設(shè)情景(一)平均變化率、割線的斜率(二)瞬時(shí)速度、導(dǎo)數(shù)我們知道,導(dǎo)數(shù)表示函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率,反映了函數(shù)y=f(x)在x=x0附近的變化情況,導(dǎo)數(shù)的幾何意義是什么呢?二新課講授(一)曲線的切線及切線的斜率:如圖3.1-2,當(dāng)沿著曲線趨近于點(diǎn)時(shí),割線的變化趨勢(shì)是什么?圖3.1-2我們發(fā)現(xiàn),當(dāng)點(diǎn)沿著曲線無(wú)限接近點(diǎn)P即x0時(shí),割線
2、趨近于確定的位置,這個(gè)確定位置的直線PT稱(chēng)為曲線在點(diǎn)P處的切線.問(wèn)題:割線的斜率與切線PT的斜率有什么關(guān)系? 切線PT的斜率為多少?容易知道,割線的斜率是,當(dāng)點(diǎn)沿著曲線無(wú)限接近點(diǎn)P時(shí),無(wú)限趨近于切線PT的斜率,即說(shuō)明:(1)設(shè)切線的傾斜角為,那么當(dāng)x0時(shí),割線PQ的斜率,稱(chēng)為曲線在點(diǎn)P處的切線的斜率.這個(gè)概念: 提供了求曲線上某點(diǎn)切線的斜率的一種方法; 切線斜率的本質(zhì)函數(shù)在處的導(dǎo)數(shù).(2)曲線在某點(diǎn)處的切線:1)與該點(diǎn)的位置有關(guān);2)要根據(jù)割線是否有極限位置來(lái)判斷與求解.如有極限,則在此點(diǎn)有切線,且切線是唯一的;如不存在,則在此點(diǎn)處無(wú)切線;3)曲線的切線,并不一定與曲線只有一個(gè)交點(diǎn),可以有多個(gè)
3、,甚至可以無(wú)窮多個(gè).(二)導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)等于在該點(diǎn)處的切線的斜率,即 說(shuō)明:求曲線在某點(diǎn)處的切線方程的基本步驟:求出P點(diǎn)的坐標(biāo);求出函數(shù)在點(diǎn)處的變化率 ,得到曲線在點(diǎn)的切線的斜率;利用點(diǎn)斜式求切線方程.(二)導(dǎo)函數(shù):由函數(shù)f(x)在x=x0處求導(dǎo)數(shù)的過(guò)程可以看到,當(dāng)時(shí), 是一個(gè)確定的數(shù),那么,當(dāng)x變化時(shí),便是x的一個(gè)函數(shù),我們叫它為f(x)的導(dǎo)函數(shù).記作:或,即: 注:在不致發(fā)生混淆時(shí),導(dǎo)函數(shù)也簡(jiǎn)稱(chēng)導(dǎo)數(shù)(三)函數(shù)在點(diǎn)處的導(dǎo)數(shù)、導(dǎo)函數(shù)、導(dǎo)數(shù) 之間的區(qū)別與聯(lián)系。1)函數(shù)在一點(diǎn)處的導(dǎo)數(shù),就是在該點(diǎn)的函數(shù)的改變量與自變量的改變量之比的極限,它是一個(gè)常數(shù),不是變數(shù)。2
4、)函數(shù)的導(dǎo)數(shù),是指某一區(qū)間內(nèi)任意點(diǎn)x而言的, 就是函數(shù)f(x)的導(dǎo)函數(shù) 3)函數(shù)在點(diǎn)處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在處的函數(shù)值,這也是 求函數(shù)在點(diǎn)處的導(dǎo)數(shù)的方法之一。三典例分析例1:(1)求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方程.(2)求函數(shù)y=3x2在點(diǎn)處的導(dǎo)數(shù).解:(1),所以,所求切線的斜率為2,因此,所求的切線方程為即(2)因?yàn)樗裕笄芯€的斜率為6,因此,所求的切線方程為即(2)求函數(shù)f(x)=在附近的平均變化率,并求出在該點(diǎn)處的導(dǎo)數(shù) 解: 例2(課本例2)如圖3.1-3,它表示跳水運(yùn)動(dòng)中高度隨時(shí)間變化的函數(shù),根據(jù)圖像,請(qǐng)描述、比較曲線在、附近的變化情況解:我們用曲線在、處的切
5、線,刻畫(huà)曲線在上述三個(gè)時(shí)刻附近的變化情況(1) 當(dāng)時(shí),曲線在處的切線平行于軸,所以,在附近曲線比較平坦,幾乎沒(méi)有升降(2) 當(dāng)時(shí),曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減(3) 當(dāng)時(shí),曲線在處的切線的斜率,所以,在附近曲線下降,即函數(shù)在附近單調(diào)遞減從圖3.1-3可以看出,直線的傾斜程度小于直線的傾斜程度,這說(shuō)明曲線在附近比在附近下降的緩慢例3(課本例3)如圖3.1-4,它表示人體血管中藥物濃度(單位:)隨時(shí)間(單位:)變化的圖象根據(jù)圖像,估計(jì)時(shí),血管中藥物濃度的瞬時(shí)變化率(精確到)解:血管中某一時(shí)刻藥物濃度的瞬時(shí)變化率,就是藥物濃度在此時(shí)刻的導(dǎo)數(shù),從圖像上看,它表示曲線在此點(diǎn)處的切線的斜率如圖3.1-4,畫(huà)出曲線上某點(diǎn)處的切線,利用網(wǎng)格估計(jì)這條切線的斜率,可以得到此時(shí)刻藥物濃度瞬時(shí)變化率的近似值作處的切線,并在切線上去兩點(diǎn),如,則它的斜率為:所以 下表給出了藥物濃度瞬時(shí)變化率的估計(jì)值:0.20.40.60.8藥物濃度瞬
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生活用品購(gòu)銷(xiāo)合同
- 知識(shí)產(chǎn)權(quán)顧問(wèn)合同的保密條款
- 煙煤粉采購(gòu)合同的采購(gòu)目標(biāo)
- 保安人員雇傭協(xié)議范本
- 購(gòu)銷(xiāo)合同的履行與解除
- 裝修合同補(bǔ)充條款示范文本
- 專(zhuān)業(yè)服務(wù)合同范本示例
- 長(zhǎng)期供貨協(xié)議合同案例
- 技術(shù)服務(wù)外包合同格式
- 購(gòu)車(chē)貸款協(xié)議書(shū)范例
- 幼兒游戲的課件
- 2025年重慶貨運(yùn)從業(yè)資格證考試題及答案詳解
- 三三制薪酬設(shè)計(jì)
- 國(guó)開(kāi)(內(nèi)蒙古)2024年《漢語(yǔ)中的中國(guó)文化》形成性考核1-3終結(jié)性考核答案
- 中藥鑒定學(xué)智慧樹(shù)知到答案2024年中國(guó)藥科大學(xué)
- 店鋪(初級(jí))營(yíng)銷(xiāo)師認(rèn)證考試題庫(kù)附有答案
- 現(xiàn)代教育技術(shù)智慧樹(shù)知到期末考試答案章節(jié)答案2024年濟(jì)寧學(xué)院
- 現(xiàn)代通信技術(shù)導(dǎo)論智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京科技大學(xué)
- 初中體育 健美操初級(jí)12個(gè)教案
- 常德市垃圾填埋場(chǎng)設(shè)計(jì)計(jì)算說(shuō)明書(shū)
- 第三章 高分子的溶液性質(zhì)
評(píng)論
0/150
提交評(píng)論