版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、平面向量數(shù)量積說(shuō)課稿武都區(qū)兩水中學(xué)xxx說(shuō)課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教 A 版)數(shù)學(xué)必修 4P116 第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí) - 平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過(guò)程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評(píng)價(jià)設(shè)計(jì)六個(gè)方面對(duì)本節(jié)課的思考進(jìn)行說(shuō)明。一、 背景分析1、學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算, 也是高中數(shù)學(xué)的一個(gè)重要概念, 在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。本節(jié)課的主要學(xué)習(xí)任務(wù)是
2、通過(guò)物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會(huì)類(lèi)比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對(duì)物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長(zhǎng)度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。2、學(xué)生情況分析學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識(shí),并且初步體會(huì)了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理
3、模型)抽象出概念,然后再?gòu)母拍畛霭l(fā),在與實(shí)數(shù)運(yùn)算類(lèi)比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對(duì)數(shù)量積概念的理解,一方面,相對(duì)于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過(guò)數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對(duì)這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會(huì)造成學(xué)生對(duì)數(shù)量積理解上的偏差,特別是對(duì)性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。二、 教學(xué)目標(biāo)設(shè)計(jì)普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)) 對(duì)本節(jié)課的要求有以下三條:( 1)通過(guò)物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。( 2)體會(huì)平面向量的
4、數(shù)量積與向量投影的關(guān)系。( 3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無(wú)論是在概念的引入還是應(yīng)用過(guò)程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無(wú)論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類(lèi)比的基礎(chǔ)上,通過(guò)主動(dòng)探究來(lái)發(fā)現(xiàn),因而對(duì)培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類(lèi)比思想都無(wú)疑是很好的載體。綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:1、了
5、解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;3、體會(huì)類(lèi)比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。三、課堂結(jié)構(gòu)設(shè)計(jì)本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識(shí)的發(fā)生和發(fā)展過(guò)程的理念,結(jié)合本節(jié)課的知識(shí)的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):1創(chuàng)設(shè)問(wèn)題情景抽象概念回顧向量的線的線性回顧向量線性運(yùn)算的研究方法物理背景功形成概念幾何意 義物理意 義探究性質(zhì)探究運(yùn)算律探究性質(zhì)證明性質(zhì)探究運(yùn)算律證明運(yùn)算律應(yīng)用概念例題與練習(xí)小結(jié)提升即先從數(shù)學(xué)和物理兩個(gè)
6、角度創(chuàng)設(shè)問(wèn)題情景,通過(guò)歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對(duì)概念的理解,然后通過(guò)例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過(guò)課堂小結(jié)提高學(xué)生認(rèn)識(shí),形成知識(shí)體系。四、教學(xué)媒體設(shè)計(jì)和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來(lái)分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來(lái)
7、節(jié)約課時(shí),增加課堂容量。2、設(shè)計(jì)科學(xué)合理的板書(shū)(見(jiàn)下),一方面使學(xué)生加深對(duì)主要知識(shí)的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識(shí)間的邏輯關(guān)系,形成知識(shí)網(wǎng)絡(luò)。平面向量數(shù)量積( 一 )一、 數(shù)量積的概念二、數(shù)量積的性質(zhì)四、應(yīng)用與提高1、 概念:例 1:2、 概念強(qiáng)調(diào)( 1)記法例 2:( 2)“規(guī)定”三、數(shù)量積的運(yùn)算律例 3:3、幾何意義:4、物理意義:五、教學(xué)過(guò)程設(shè)計(jì)課標(biāo)指出:數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動(dòng):活動(dòng)一: 創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)習(xí)興趣正如教材主編寄語(yǔ)所言,數(shù)學(xué)是自然的,而不是強(qiáng)加
8、于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問(wèn)題:?jiǎn)栴} 1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?問(wèn)題 2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?期望學(xué)生回答:物理模型概念性質(zhì)運(yùn)算律應(yīng)用問(wèn)題 3:如圖所示,一物體在力F 的作用下產(chǎn)生位移S,F(xiàn)( 1)力 F 所做的功 W=。( 2) 請(qǐng)同學(xué)們分析這個(gè)公式的特點(diǎn):W(功)是量, F(力)是量, S(位移)是量,是。2S問(wèn)題 1 的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣
9、,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。問(wèn)題 2 的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類(lèi)比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動(dòng)指明方向。問(wèn)題 3 的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊?;顒?dòng)二: 探究數(shù)量積的概念1、概念的抽象在分析“功”的計(jì)算公式的基礎(chǔ)上提出問(wèn)題4問(wèn)題 4:你能用文字語(yǔ)言來(lái)表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?學(xué)
10、生通過(guò)思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。 這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上, 我進(jìn)一步明晰數(shù)量積的概念。2、概念的明晰已知兩個(gè)非零向量a 與 b ,它們的夾角為,我們把數(shù)量a · b cos叫做 a 與 b 的數(shù)量積(或內(nèi)積),記作: a · b ,即: a · b = a · b cos在強(qiáng)調(diào)記法和“規(guī)定”后,為了讓學(xué)生進(jìn)一步認(rèn)識(shí)這一概念,提出問(wèn)題5問(wèn)題 5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:角的范圍0°<90
11、°=90°0° < 180°a · b 的符號(hào)通過(guò)此環(huán)節(jié)不僅使學(xué)生認(rèn)識(shí)到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識(shí)到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。3、探究數(shù)量積的幾何意義這個(gè)問(wèn)題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1 后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺(jué)得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問(wèn)題 5。如圖,我們把b
12、 cos( a cos)叫做向量 b 在 a 方向上( a 在 b 方向上)的投影,記做: OB1= b cos問(wèn)題 6:數(shù)量積的幾何意義是什么?這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識(shí)數(shù)量積的概念,從中體會(huì)數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識(shí)的連貫性,而且也節(jié)約了課時(shí)。4、研究數(shù)量積的物理意義數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會(huì)明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積 。為此,我設(shè)計(jì)以下問(wèn)題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時(shí)也為數(shù)量積的性質(zhì)埋下伏筆。問(wèn)題 7:( 1) 請(qǐng)同學(xué)們用一句話來(lái)概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積。
13、( 2)嘗試練習(xí):一物體質(zhì)量是10 千克,分別做以下運(yùn)動(dòng):、在水平面上位移為10 米;、豎直下降10 米;、豎直向上提升10 米;、沿傾角為30 度的斜面向上運(yùn)動(dòng)10 米;分別求重力做的功。3活動(dòng)三: 探究數(shù)量積的運(yùn)算性質(zhì)1、性質(zhì)的發(fā)現(xiàn)教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動(dòng),在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問(wèn)題8:( 1)將嘗試練習(xí)中的 的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?( 2)比較 a · b 與 a × b 的大小,你有什么結(jié)論?在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究
14、活動(dòng)。2 、明晰數(shù)量積的性質(zhì)數(shù)量積的性質(zhì)設(shè) a 和 b 都是非零向量,則數(shù)量積的性質(zhì)1 、 a ba · b =02 、當(dāng) a 與 b 同向時(shí), a · b = a b ;當(dāng) a 與 b 反向時(shí), a · b = - a b , 特別地, a · a = a 2 或 a =a a3 、 a · b a × b 3、性質(zhì)的證明這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動(dòng)的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動(dòng)的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,不僅使學(xué)生獲得了知識(shí),更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)?;顒?dòng)四: 探究
15、數(shù)量積的運(yùn)算律1、運(yùn)算律的發(fā)現(xiàn)關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問(wèn)題9問(wèn)題 9:我們學(xué)過(guò)了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對(duì)向量是否也適用?通過(guò)此問(wèn)題主要是想使學(xué)生在類(lèi)比的基礎(chǔ)上,猜測(cè)提出數(shù)量積的運(yùn)算律。學(xué)生可能會(huì)提出以下猜測(cè): a · b = b · a( a · b ) c = a ( b · c )( a + b )· c = a · c + b · c猜測(cè)的正確性是顯而易見(jiàn)的。關(guān)于猜測(cè)的正確性,我提示學(xué)生思考下面的問(wèn)題:猜測(cè)的左右兩邊的結(jié)果各是什么?它們一定相等嗎?學(xué)生通過(guò)討論不難發(fā)現(xiàn),猜測(cè)是不正
16、確的。這時(shí)教師在肯定猜測(cè)的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:2、明晰數(shù)量積的運(yùn)算律數(shù)量積的運(yùn)算律已知向量 a 、b 、 c 和實(shí)數(shù),則:( 1) a · b = b · a(2)( a )· b =( a · b ) = a ·( b )( 3)( a + b )· c= a · c +b · c43 、證明運(yùn)算律學(xué)生獨(dú)立證明運(yùn)算律(2)我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到 >0 的情況 , 為了幫助學(xué)生完善證明,提出以下問(wèn)題:當(dāng) <0 時(shí),向量 a 與 a , b 與 b 的方向
17、的關(guān)系如何?此時(shí),向量 a 與 b 及 a 與 b 的夾角與向量 a 與 b 的夾角相等嗎?師生共同證明運(yùn)算律(3)運(yùn)算律( 3)的證明對(duì)學(xué)生來(lái)說(shuō)是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類(lèi)比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類(lèi)比創(chuàng)新的意識(shí),將知識(shí)的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起?;顒?dòng)五 :應(yīng)用與提高例 1、(師生共同完成) 已知 a =6, b =4, a 與 b 的夾角為 60°,求( a +2 b )·( a -
18、 3 b ),并思考此運(yùn)算過(guò)程類(lèi)似于哪種運(yùn)算?例 2、(學(xué)生獨(dú)立完成)對(duì)任意向量a , b 是否有以下結(jié)論:( 1) ( a + b ) 2= a 2+2 a · b + b 2( 2) ( a + b ) ·( a - b ) = a 2 b 2例 3、(師生共同完成) 已知 a =3, b =4,且 a 與 b 不共線, k 為何值時(shí), 向量 a +k b與a -k b 互相垂直?并思考:通過(guò)本題你有什么收獲?1 和例 3 增加了題后反思。本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對(duì)例例 1 是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對(duì)運(yùn)算原理
19、的分析和運(yùn)算過(guò)程的規(guī)范書(shū)寫(xiě)兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問(wèn)題:此運(yùn)算過(guò)程類(lèi)似于哪種運(yùn)算?目的是想讓學(xué)生在類(lèi)比多項(xiàng)式乘法的基礎(chǔ)上自己猜測(cè)提出例2 給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過(guò)類(lèi)比這一思維模式達(dá)到創(chuàng)新的目的。例3 的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來(lái)判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問(wèn)題,再安排如下練習(xí):1、下列兩個(gè)命題正確嗎?為什么?、若 a 0 ,則對(duì)任一非零向量b ,
20、有 a · b 0、若 a 0 , a · b a · c ,則 b c 2、已知 ABC中, AB = a ,AC = b ,當(dāng) a · b <0 或 a · b 0 時(shí),試判斷 ABC的形狀。安排練習(xí) 1 的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識(shí)數(shù)量積這一重要運(yùn)算,通過(guò)練習(xí) 2 使學(xué)生學(xué)會(huì)用數(shù)量積表示兩個(gè)向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價(jià)值?;顒?dòng)六 :小結(jié)提升與作業(yè)布置1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么?3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過(guò)程中,滲透了哪些數(shù)學(xué)思想?4、類(lèi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《YAP1通過(guò)靶向Hippo通路調(diào)節(jié)食管鱗癌細(xì)胞生物學(xué)行為》
- 2024年天然氣運(yùn)輸項(xiàng)目管理合同
- 2024-2030年群集分離器行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 2024-2030年礦生超細(xì)粉公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年電加熱元件(電加熱器)行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 2024-2030年版中國(guó)污水處理及再生利用行業(yè)需求分析及發(fā)展規(guī)劃研究報(bào)告
- 2024年度物聯(lián)網(wǎng)技術(shù)應(yīng)用與推廣合同
- 2024年排版設(shè)計(jì)保密合同
- 2024年數(shù)據(jù)中心清潔與保養(yǎng)分包合同
- 2024-2030年新版中國(guó)金融卡項(xiàng)目可行性研究報(bào)告
- 關(guān)于學(xué)習(xí)“國(guó)語(yǔ)普通話”發(fā)聲亮劍【三篇】
- 玻璃廠應(yīng)急預(yù)案
- 嬰幼兒游戲照料(嬰幼兒回應(yīng)性照護(hù)課件)
- 貨車(chē)進(jìn)入車(chē)間安全要求
- MAC地址-廠商對(duì)應(yīng)表
- 2022年中國(guó)出版業(yè)總體狀況分析
- BIM大賽題庫(kù)含答案
- 造紙術(shù)學(xué)習(xí)課件
- (完整版)譯林版四年級(jí)上冊(cè)Unit7單元測(cè)試
- 水上作業(yè)危險(xiǎn)源辨識(shí)與技術(shù)控制措施
- 吊索具檢查記錄表
評(píng)論
0/150
提交評(píng)論