版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、x 表示時 )圖中D林茂從文具店回家的平均速度是60m min將直線 y 2x 3向右平移 2 個單位,再向上平移33 個單位后,所得的直線的表達式為Ay 2x 4B y 2x 4C y2x 2D4如圖,在平面直角坐標系中,菱形ABCD 的頂點A,B 在反比例函數(shù)k( k 0,x0)的圖象上,橫坐標分別為 1,4,對角線 BDx 軸若菱形 ABCD的面積為 45 ,22019-2020 中考數(shù)學(xué)模擬試卷帶答案一、選擇題1 下列計算正確的是()A 2a 3b 5abB(ab)2a2b2 C(2x 2)36x6Dx8÷x3x52已知林茂的家、體育場、文具店在同一直線上,圖中的信息反映的過
2、程是:林茂從家跑 步去體育場,在體育場鍛煉了一陣后又走到文具店買筆,然后再走回家列說法錯誤的是(C林茂從體育場出發(fā)到文具店的平均速度是50m min4C4l1 上,兩直D545 如圖,直線 l1l2,將一直角三角尺按如圖所示放置,使得直角頂點在直線角邊分別與直線 l1、 l 2相交形成銳角 1、2且125°,則 2 的度數(shù)為()75°C 65°6如圖,長寬高分別為 2,1,1 的長方體木塊上有一只小蟲從頂點 表面爬到頂點 B,則它爬行的最短路程是()D55°A 出發(fā)沿著長方體的外A710B 5C 2 2直線 y= kx +k3 與直線 y=kx 在同一坐
3、標系中的大致圖象可能是(DA8如圖,在直角坐標系中,OC 在 y 軸上,如果矩形1形 OABC 面積的 1 ,那么點 B的坐標是( )4)BA( 2, 3)或( 2, 3)如圖, 某小區(qū)規(guī)劃在一個長 16m,寬 9m的矩形場地 ABCD上,修建同樣寬的小路, 中兩條與 AB平行,另一條與 AD平行,其余部分種草,如果使草坪部分的總面積為 設(shè)小路的寬為 xm,那么 x 滿足的方程是(B( 2, 3)C( 3, 2)或( 2,3)D 2,3)9使其112m2,10 如圖是二次函數(shù) 在點( 2, 0)和( 3,Bx2-25x+32=02 y=ax2+bx+c(a,b, 0)之間,對稱軸是Cx2-17
4、x+16=0Dx2-17x-16=0c 是常數(shù), a 0)圖象的一部分,與 x 軸的交點 A x=1對于下列說法: ab <0; 2a+b=0 ;3a+c>0;a+bm(am+b)(m為實數(shù)); 當1<x<3 時, y>0,其中正確的是 ()AB C D k211如圖,正比例函數(shù) y=k1x 與反比例函數(shù) y= 2 的圖象相交于點 A 、B兩點,若點 A 的x坐標為( 2, 1),則點 B 的坐標是( )A(1,2)B( 2,1)C( 1,2)D( 2,1)12甲、乙二人做某種機械零件,已知每小時甲比乙少做8 個,甲做 120個所用的時間與乙做 150 個所用的時
5、間相等,設(shè)甲每小時做x 個零件,下列方程正確的是( )120 150120150120 150120150ABCDx x 8x8xx 8 xxx8二、填空題13如圖,矩形 ABCD 中,AB=3,對角線AC,BD 相交于點 O ,AE 垂直平分OB 于點E,則 AD 的長為14 已知關(guān)于 x 的一元二次方程 mx2+5x+m 22m=0 有一個根為 0,則 m=15如圖是兩塊完全一樣的含 30°角的直角三角尺,分別記做 ABC 與AB,C現(xiàn)將兩塊 三角尺重疊在一起,設(shè)較長直角邊的中點為M,繞中點 M 轉(zhuǎn)動上面的三角尺 ABC ,使其直角頂點 C恰好落在三角尺 AB的C斜邊 AB上當
6、A 30°, AC 10 時,兩直角頂點 C, C間的距離是 16 分解因式: 2x36x2+4x=x a 017不等式組有 3 個整數(shù)解,則 a的取值范圍是 1 x 2x 518口袋內(nèi)裝有一些除顏色外完全相同的紅球、白球和黑球,從中摸出一球,摸出紅球的概率是 0.2,摸出白球的概率是 0.5,那么摸出黑球的概率是19如圖,矩形 ABCD中, AB=3,BC=4,點 E是 BC邊上一點,連接 AE,把 B沿 AE折 疊,使點 B落在點 處,當 為直角三角形時, BE的長為 .3)20 對于有理數(shù) a、 b,定義一種新運算,規(guī)定 a b a2 |b|,則 2( 3) 三、解答題21 如
7、圖 1,ABC內(nèi)接于 O, BAC的平分線交 O于點 D,交 BC于點 E( BE> EC),且 BD=2 3 過點 D 作 DFBC,交 AB的延長線于點 F1)求證: DF為 O的切線;2)若 BAC=60°,DE= 7 ,求圖中陰影部分的面積; 若 AB 4 , DF+BF=8,如圖 2,求 BF 的長AC 3AC ,過點 B 作O的22如圖,點 D在以 AB為直徑的 O上, AD平分 BAC, DC切線交 AD 的延長線于點 E( 1)求證:直線 CD 是 O的切線( 2)求證: CD BE AD DE 23 某烘焙店生產(chǎn)的蛋糕禮盒分為六個檔次,第一檔次(即最低檔次 )
8、的產(chǎn)品每天生產(chǎn) 76件,每件利潤 10 元,調(diào)查表明:生產(chǎn)提高一個檔次的蛋糕產(chǎn)品,該產(chǎn)品每件利潤增加2元(1)若生產(chǎn)第五檔次的蛋糕,該檔次蛋糕每件利潤為多少元? (2)由于生產(chǎn)工序不同,蛋糕產(chǎn)品每提高一個檔次,一天產(chǎn)量會減少 4 件若生產(chǎn)的某檔次 產(chǎn)品一天的總利潤為 1024 元,該烘焙店生產(chǎn)的是第幾檔次的產(chǎn)品?3 x 4x 124 解不等式組 5 x 1>x2,并把它的解集在數(shù)軸上表示出來2x+b) 4 c的一元四次方程時,可以先求常數(shù)a和 b的均值25 材料:解形如( x+a) 4+,然后設(shè) y x+再把原方程換元求解,用種方法可以成功地消去含未知數(shù)的奇次項,使方程轉(zhuǎn)化成易于求解的雙
9、二次方程,這種方法叫做“均值換元法 例:解方程:( x2)4+( x3)41,原方程可化為( y+ )4+(y ) 4解:因為 2 和 3 的均值為,所以,設(shè) y x1,21去括號,得:( y2+y+ )2+( y2 y+ )+ y2+ y+y +y + y + y+y +y +0(成功地消去了未知數(shù)的奇次項)(舍去)號,342y4+y2+42 2y3+ y2 y1整理,得:2y4+3y2解得: y2 或 y 2 所以 y±,即 x 所以 x3 或 x 2(1)用閱讀材料中這種方法解關(guān)于x 的方程( x+3)4+(x+5)41130時,先求兩個常數(shù))41130的均值為 設(shè) yx+ 原
10、方程轉(zhuǎn)化為:( y ) 4+ ( y+(2)用這種方法解方程( x+1)4+( x+3) 4706參考答案】 * 試卷處理標記,請不要刪除、選擇題 1D解析: D【解析】分析: A 原式不能合并,錯誤;B原式利用完全平方公式展開得到結(jié)果,即可做出判斷;C原式利用積的乘方運算法則計算得到結(jié)果,即可做出判斷; D原式利用同底數(shù)冪的除法法則計算得到結(jié)果,即可做出判斷 詳解: A不是同類項,不能合并,故 A 錯誤;B(ab)2=a22ab+b2,故 B 錯誤;C( 2x 2)38x6,故 C錯誤;Dx8÷x3 x5,故 D 正確故選 D 點睛:本題考查了完全平方公式,合并同類項,冪的乘方及積
11、的乘方,以及同底數(shù)冪的除 法,熟練掌握公式及法則是解答本題的關(guān)鍵2C 解析: C 【解析】 【分析】 從圖中可得信息:體育場離文具店 1000m,所用時間是( 45 30)分鐘,可算出速度 【詳解】解:從圖中可知:體育場離文具店的距離是: 2.5 1.5 1km 1000m , 所用時間是 45 30 15 分鐘,體育場出發(fā)到文具店的平均速度 1000 200 m min15 3 故選: C【點睛】 本題運用函數(shù)圖象解決問題,看懂圖象是解決問題的關(guān)鍵 3A 解析: A【解析】【分析】直接根據(jù) “上加下減 ”、“左加右減 ”的原則進行解答即可【詳解】由 “左加右減 ”的原則可知,將直線 y=2x
12、-3 向右平移 2 個單位后所得函數(shù)解析式為 y=2(x-2)-3=2x-7 ,由“上加下減 ”原則可知,將直線 y=2x-7 向上平移 3個單位后所得函數(shù)解 析式為 y=2x-7+3=2x-4 ,故選 A.點睛】本題考查了一次函數(shù)的平移,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵4D解析: D【解析】 【分析】設(shè) A(1 ,m),B(4,n),連接 AC 交 BD 于點 M ,BM=4-1=3 ,AM=m-n ,由菱形的面積可推15得 m-n= 15 ,再根據(jù)反比例函數(shù)系數(shù)的特性可知 m=4n ,從而可求出 n 的值,即可得到 k 的4值.【詳解】 設(shè) A(1 ,m),B(4,n),連接 AC
13、交 BD 于點 M , 則有 BM=4-1=3 , AM=m-n ,1 S 菱形 ABCD =4× BM?AM ,2S菱形ABCD = 45 ,24×1 ×3(m-n)= 45 ,2215 m-n=,4又點 A , B 在反比例函數(shù)ky,x k=m=4n ,5n= ,4 k=4n=5 , 故選 D.本題考查了反比例函數(shù) k 的幾何意義、菱形的性質(zhì)、菱形的面積等,熟記菱形的對角線互 相垂直平分是解題的關(guān)鍵 .5C解析: C【解析】【分析】依據(jù) 1 25°, BAC 90°,即可得到 365°,再根據(jù)平行線的性質(zhì),即可得到2365
14、6;【詳解】如圖, 125°, BAC 90°, 3180°-90°-25 °=65°,l1l2,【點睛】本題考查的是平行線的性質(zhì),運用兩直線平行,同位角相等是解答此題的關(guān)鍵6C解析: C【解析】【分析】螞蟻有兩種爬法,就是把正視和俯視(或正視和側(cè)視)二個面展平成一個長方形,然后求 其對角線,比較大小即可求得最短路程【詳解】如圖所示,路徑一:AB 22 (1 1)2 2 2 ;路徑二: AB (2 1)2 1210 2 2< 10 ,螞蟻爬行的最短路程為 2 2 點睛】本題考查了立體圖形中的最短路線問題;通常應(yīng)把立體幾何中的最短
15、路線問題轉(zhuǎn)化為平面 幾何中的求兩點間距離的問題;注意長方體展開圖形應(yīng)分情況進行探討7B解析: B【解析】【分析】 若 y=kx 過第一、三象限,則 k>0,所以 y=-kx+k-3 過第二、四象限,可對 A 、 D 進行判 斷;若 y=kx 過第二、四象限,則 k<0,-k>0,k-3 <0,所以 y=-kx+k-3 過第一、三象 限,與 y 軸的交點在 x 軸下方,則可對 B、C 進行判斷【詳解】A 、 y=kx 過第一、三象限,則 B、 y=kx 過第二、四象限,則 y 軸的交點在 x 軸下方,所以 C、 y=kx 過第二、四象限,則 y 軸的交點在 x 軸下方,所
16、以 D、 y=kx 過第一、三象限,則 故選 B k>0,所以 y=-kx+k-3 過第二、四象限,所以 A 選項錯誤; k<0, -k>0,k-3< 0,所以 y=-kx+k-3 過第一、三象限,與 B 選項正確;k<0, -k>0,k-3< 0,所以 y=-kx+k-3 過第一、三象限,與 C 選項錯誤;k>0,所以 y=-kx+k-3 過第二、四象限,所以 D 選項錯誤【點睛】本題考查了一次函數(shù)的圖象:一次函數(shù)y=kx+b (k0)的圖象為一條直線,當 k> 0,圖象過第一、三象限;當 k< 0,圖象過第二、四象限;直線與y 軸
17、的交點坐標為( 0,b)8D解析: D【解析】 如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點的連線交于一點,對應(yīng)邊互相平行或在一 條直線上,那么這兩個圖形叫做位似圖形。把一個圖形變換成與之位似的圖形是位似變 換。因此,矩形 OAB與C矩形 OABC關(guān)于點 O 位似,矩形 OABC矩形 OABC。11矩形 OAB的C面積等于矩形 OABC面積的 ,位似比為: 。42點 B的坐標為( 4,6),點 B的坐標是:( 2, 3)或( 2, 3)。故選 D。 9C 解析: C【解析】解:設(shè)小路的寬度為 xm,那么草坪的總長度和總寬度應(yīng)該為(16-2x) m,( 9-x) m;根據(jù)題意即可得出方程為:( 1
18、6-2x)( 9-x)=112,整理得: x2-17x+16=0 故選 C 點睛:本題考查了一元二次方程的運用,弄清“草坪的總長度和總寬度”是解決本題的關(guān) 鍵10A解析: A【解析】【分析】由拋物線的開口方向判斷 a與0的關(guān)系,由拋物線與 y軸的交點判斷 c與 0的關(guān)系,然后 根據(jù)對稱軸判定 b與 0 的關(guān)系以及 2a+b=0;當 x=1時,y=ab+c;然后由圖象確定當 x 取何值時, y> 0【詳解】對稱軸在 y 軸右側(cè),a、b 異號,ab< 0,故正確;對稱軸 x b 1,2a2a+b=0 ;故正確; 2a+b=0,b= 2a,當 x=1 時, y=a b+c< 0,
19、a( 2a) +c=3a+c < 0,故錯誤; 根據(jù)圖示知,當 m=1 時,有最大值; 當 m1時,有 am2+bm+c a+b+c, 所以 a+bm(am+b )( m 為實數(shù)) 故正確如圖,當 1<x<3時, y不只是大于 0 故錯誤故選 A 【點睛】 本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握二次項系數(shù) a 決定 拋物線的開口方向,當 a> 0時,拋物線向上開口;當 a<0 時,拋物線向下開口;一次 項系數(shù) b和二次項系數(shù) a共同決定對稱軸的位置:當 a與 b同號時(即 ab>0),對稱軸在 y 軸左; 當 a與 b異號時(即 ab<
20、 0),對稱軸在 y軸右(簡稱:左同右異)常數(shù)項c決定拋物線與 y 軸交點,拋物線與 y 軸交于( 0, c)11D 解析: D 【解析】 【分析】 【詳解】 解:根據(jù)正比例函數(shù)與反比例函數(shù)關(guān)于原點對稱的性質(zhì),正比例函數(shù)y=k1x 與反比例函數(shù)k2y= 2 的圖象的兩交點 A 、 B 關(guān)于原點對稱;x由 A 的坐標為( 2, 1),根據(jù)關(guān)于原點對稱的點的坐標是橫、縱坐標都互為相反數(shù)的坐標 特征,得點 B 的坐標是( 2, 1)故選: D12D解析: D【解析】【分析】首先用 x 表示甲和乙每小時做的零件個數(shù),再根據(jù)甲做120 個所用的時間與乙做 150個所用的時間相等即可列出一元一次方程 .詳
21、解】 解:甲每小時做 x 個零件,乙每小時做( x+8 )個零件,120 150 ,x x 8甲做 120 個所用的時間與乙做 150 個所用的時間相等, 故選 D.【點睛】 本題考查了分式方程的實際應(yīng)用,熟練掌握是解題的關(guān)鍵二、填空題13【解析】試題解析: 四邊形 ABCD 是矩形OB=ODOA=OCAC=BD OA=OBAE 垂直平分OBAB=AO OA=AB=OB=3 BD=2OB=6AD= 【點睛】此題考查了矩形的 性質(zhì)等邊三角解析: 3 3【解析】試題解析:四邊形 ABCD 是矩形,OB=OD,OA=OC,AC=BD,OA=OB ,AE 垂直平分 OB ,AB =AO ,OA=AB=
22、OB=3,BD=2OB=6,AD= BD2 AB2 62 32 3 3 【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾 股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵 142【解析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義 列出關(guān)于 m的方程通過解關(guān)于 m的方程求得 m的值即可【詳解】 關(guān)于 x的一元 二次方程 mx2+5x+m22m=0有一個根為 0 m22m=解析: 2【解析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于 m 的方程,通過 解關(guān)于 m 的方程求得 m 的值即可【詳解】關(guān)于 x 的一元二次
23、方程 mx2+5x+m 2 2m=0 有一個根為 0, m2 2m=0 且 m0,解得, m=2 , 故答案是: 2 【點睛】本題考查了一元二次方程 ax2+bx+c=0 ( a0)的解的定義解答該題時需注意二 次項系數(shù) a0這一條件155【解析】【分析】連接 CC1根據(jù) M是 ACA1C1的中點 AC=A1C1得出 CM=A1M=C1M=AC再=根5 據(jù) A1=A1CM=3°0 得出 CMC1=6°0 MCC1為等邊三角 形從而證出 CC1=CM解析: 5【解析】【分析】1連接 CC1,根據(jù) M 是 AC、A1C1 的中點, AC=A1C1,得出 CM=A1M=C1M=
24、AC=5,再根據(jù)A1=A1CM=30°,得出 CMC1=60°,MCC1 為等邊三角形,從而證出 CC1=CM,即可得出答 案【詳解】 解:如圖,連接 CC1, 兩塊三角板重疊在一起,較長直角邊的中點為 M , M 是 AC 、A1C1的中點, AC=A 1C1,1CM=A1M=C1M= AC=5, A1=A1CM=30°, CMC 1=60°, CMC 1 為等邊三角形, CC1=CM=5 ,CC1 長為 5故答案為 5考點:等邊三角形的判定與性質(zhì)162x(x1)(x2)【解析】分析:首先提取公因式 2x 再利用十字相乘法 分解因式得出答案詳解: 2x
25、36x2+4x=2x(x23x+2) =2x(x1)( x2)故答案為 2x(x1)( x2)點解析: 2x(x 1)( x2)【解析】 分析:首先提取公因式 2x,再利用十字相乘法分解因式得出答案詳解: 2x3 6x2+4x =2x(x23x+2) =2x(x1)( x 2)故答案為 2x(x1)( x2) 點睛:此題主要考查了提取公因式法以及十字相乘法分解因式,正確分解常數(shù)項是解題關(guān) 鍵172a< 1【解析】【分析】先解不等式組確定不等式組的解集(利用含 a 的式子表示)根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解根據(jù)解的情況可以 得到關(guān)于 a 的不等式從而求出 a 的范圍【詳解】解不等式
26、 xa>0得 解析: 2a< 1【解析】【分析】 先解不等式組確定不等式組的解集(利用含a 的式子表示),根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出 a 的范圍【詳解】解不等式 xa> 0,得: x>a, 解不等式 1x> 2x5,得: x<2, 不等式組有 3 個整數(shù)解, 不等式組的整數(shù)解為 1、 0、 1, 則 2a< 1, 故答案為: 2a< 1【點睛】 本題考查不等式組的解法及整數(shù)解的確定求不等式組的解集,應(yīng)遵循以下原則:同大取 較大,同小取較小,小大大小中間找,大大小小解不了183【解析】試題解
27、析:根據(jù)概率公式摸出黑球的概率是 1-02-05=03 考點: 概率公式解析: 3.【解析】 試題解析:根據(jù)概率公式摸出黑球的概率是1-0.2-0.5=0.3 考點:概率公式193 或 32【解析】【分析】當 CEB為直角三角形時有兩種情況: 當點 B 落在矩形內(nèi)部時如答圖 1 所示連結(jié) AC先利用勾股定理計算出 AC=5根據(jù)折疊的 性質(zhì)得 ABE=B=90°而當CEB為直角三角解析: 3 或 【解析】【分析】當CEB為直角三角形時,有兩種情況:當點 B落在矩形內(nèi)部時,如答圖 1 所示連結(jié) AC,先利用勾股定理計算出 AC=5 ,根據(jù)折疊的性質(zhì)得 ABE=B=90°,而當
28、CEB為直角三角形時,只能得到 EB C=90,°所以點 A、B、C共線,即 B沿 AE 折 疊,使點 B 落在對角線 AC 上的點 B處,則 EB=EB, AB=AB=3 ,可計算出 CB=2,設(shè) BE=x ,則 EB =,x CE=4-x ,然后在 RtCEB中運用勾股定理可計算出 x當點 B落在 AD 邊上時,如答圖 2 所示此時 ABEB為正方形【詳解】 當CEB為直角三角形時,有兩種情況:連結(jié) AC ,在 RtABC 中, AB=3 , BC=4 , AC=5 ,B沿AE 折疊,使點 B落在點 B處, ABE= B=90°, 當CEB為直角三角形時,只能得到 EB
29、C=90°,點 A 、B、 C共線,即 B沿AE折疊,使點 B落在對角線 AC 上的點 B處, EB=EB , AB=AB=3 ,CB=5-3=2,設(shè) BE=x ,則 EB=x, CE=4-x ,在 Rt CEB中, EB2+CB2=CE2,x2+22=( 4-x)2,解得,BE= ; 當點 B落在 AD 邊上時,如答圖 2 所示 此時 ABEB為正方形, BE=AB=3 綜上所述, BE 的長為 或 3故答案為: 或 3201【解析】解: 2(3)=22| 3|=43=1故答案為 1點睛:此題考查 有理數(shù)的混合運算掌握規(guī)定的運算方法是解決問題的關(guān)鍵解析: 1【解析】解: 2( 3)
30、=22|3|=43=1故答案為 1點睛:此題考查有理數(shù)的混合運算,掌握規(guī)定的運算方法是解決問題的關(guān)鍵三、解答題21 (1)證明見解析( 2) 9 3 2;( 3) 3【解析】【分析】(1)連結(jié) OD ,如圖 1,由已知得到 BAD= CAD ,得到 B?D C?D,再由垂徑定理得 ODBC,由于 BC EF,則 OD DF,于是可得結(jié)論;(2)連結(jié) OB,OD交 BC于P,作 BH DF于H,如圖 1,先證明 OBD 為等邊三角形得 到 ODB=6°0 ,OB=BD= 2 3,得到 BDF= DBP=30°,在 RtDBP 中得到 PD= 3,PB=3,在 Rt DEP 中
31、利用勾股定理可算出 PE=2,由于 OPBC,則 BP=CP=3 ,得到 CE=1,由BDE ACE ,得到 AE 的長,再證明 ABE AFD ,可得 DF=12 ,最后利 用S 陰影部分 =SBDF S 弓形 BD =SBDF ( S 扇形 BOD SBOD)進行計算;3)連結(jié) CD,如圖 2,由ABAC4可設(shè) AB=4x , AC=3x ,設(shè) BF=y,3由 ?BDC?D得到CD=BD= 2 3 ,由BFD CDA ,得到 xy=4 ,再由 FDB FAD ,得到 16 4y=xy , 則 164y=4,然后解方程即可得到 BF=3 【詳解】(1)連結(jié) OD,如圖 1,AD 平分 BAC
32、 交O于 D, BAD= CAD , B?D C?D , OD BC ,BC EF, ODDF,DF 為O 的切線;(2)連結(jié) OB,連結(jié) OD 交 BC 于 P,作 BHDF 于 H,如圖 1, BAC=60° , AD 平分 BAC , BAD=30° , BOD=2 BAD=60° OBD 為等邊三角形, ODB=6°0 ,OB=BD= 2 3, BDF=30°,BCDF, DBP=30° ,1在 RtDBP 中, PD= BD= 3 ,PB= 3 PD=3 ,在 RtDEP 中, PD= 3 ,DE= 7 , PE= ( 7)
33、 2 ( 3)2 =2, OPBC, BP=CP=3 , CE=32=1,易證得BDE ACE , AE : BE=CE : DE ,即 AE : 5=1: 7 , AE= 5 7,BEDF, ABE AFD , BEDFAE 5AD ,即 DF577 ,解得 DF=12 ,12 57在 Rt BDH 中, BH= 1 BD=23, S 陰影部分 =SBDF S弓形 BD=SBDF( S扇形 BOD SBOD )1 12 3 60 (2 3)22360(2 3)2 = 9 3 2 ;3)連結(jié) CD,如圖 2,ABAC4可設(shè) AB=4x , AC=3x ,設(shè) BF=y , ?BD C? D,CD
34、=BD= 2 3 , F= ABC= ADC , FDB= DBC= DACBFD CDA ,BD BF,即 2 3AC CD 3x xy=4 ,23 FDB= DBC= DAC= FAD ,而 DFB= AFD ,DF BF8 y y FDB FAD,即 ,AF DFy 4x 8 y整理得 16 4y=xy , 164y=4,解得 y=3,即 BF的長為 3考點: 1圓的綜合題; 2相似三角形的判定與性質(zhì); 3切線的判定與性質(zhì); 4綜合 題; 5壓軸題22 (1)證明見解析; (2)證明見解析 .【解析】【分析】(1)連接 OD,由角平分線的定義得到 CAD= BAD ,根據(jù)等腰三角形的性質(zhì)得到 BAD= ADO ,求得 CAD= ADO ,根據(jù)平行線的性質(zhì)得到 CD OD ,于是得到結(jié) 論;(2)連接 BD,根據(jù)切線的性質(zhì)得到 ABE= BDE=90° ,根據(jù)相似三角形的性質(zhì)即可得 到結(jié)論【詳解】解:證明: (1)連接 OD ,AD 平分 BAC , CAD BAD , OA OD ,BAD ADO , CADADO , ACOD , CD AC , CD OD ,直線 CD 是O 的切線;(2)連接 BD ,BE是 O的切線, AB為O的直徑, ABE BDE 90 , CD AC , C BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:進一步全面深化改革推進中國式現(xiàn)代化的學(xué)理性研究
- 課題申報參考:建設(shè)用地減量化的空間優(yōu)化效應(yīng)、機制與政策優(yōu)化研究
- 2025年erp沙盤模擬學(xué)習(xí)心得(3篇)
- 2025版投資協(xié)議補充協(xié)議:產(chǎn)業(yè)鏈整合投資合作補充協(xié)議3篇
- 2025年度個性化定制汽車租賃合同書4篇
- 二零二五版漫畫連載網(wǎng)絡(luò)平臺版權(quán)合作協(xié)議4篇
- 2025年汕尾貨車從業(yè)資格證考什么
- 2025年食堂承包經(jīng)營食品安全風(fēng)險評估與防控合同3篇
- 二零二五年度城市公交車輛掛靠經(jīng)營許可合同4篇
- 二零二五年度廠房污水處理及排放合同匯編3篇
- 2025年溫州市城發(fā)集團招聘筆試參考題庫含答案解析
- 2025年中小學(xué)春節(jié)安全教育主題班會課件
- 2025版高考物理復(fù)習(xí)知識清單
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 2025年度安全檢查計劃
- 2024年度工作總結(jié)與計劃標準版本(2篇)
- 全球半導(dǎo)體測試探針行業(yè)市場研究報告2024
- 反走私課件完整版本
- 2024年注冊計量師-一級注冊計量師考試近5年真題附答案
- 【可行性報告】2023年電動自行車行業(yè)項目可行性分析報告
- 臨床見習(xí)教案COPD地診療教案
評論
0/150
提交評論