![大數(shù)據(jù)關(guān)鍵技術(shù)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/15/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d1.gif)
![大數(shù)據(jù)關(guān)鍵技術(shù)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/15/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d2.gif)
![大數(shù)據(jù)關(guān)鍵技術(shù)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/15/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d/fd0e2e64-6de7-4cc0-9b0a-d0533faa8c0d3.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、大數(shù)據(jù)關(guān)鍵技術(shù)A8Q8LGA162roonif【LGA16HGYY大數(shù)據(jù)關(guān)鍵技術(shù)大數(shù)據(jù)技術(shù),就是從各種類型的數(shù)據(jù)中快速獲得有價值信息的技術(shù)。大 數(shù)據(jù)領(lǐng)域已經(jīng)涌現(xiàn)岀了大量新的技術(shù),它們成為大數(shù)據(jù)采集、存儲、處理 和呈現(xiàn)的有力武器。大數(shù)據(jù)處理關(guān)鍵技術(shù)一般包扌4大數(shù)據(jù)采集、大數(shù)據(jù)預處理、大數(shù)據(jù) 存儲及管理、大數(shù)據(jù)分析及挖掘、大數(shù)據(jù)展現(xiàn)和應(yīng)用(大數(shù)據(jù)檢索、大數(shù) 據(jù)可視化、大數(shù)據(jù)應(yīng)用、大數(shù)據(jù)安全等)。一、大數(shù)據(jù)采集技術(shù)數(shù)據(jù)是指通過RFID射頻數(shù)據(jù)、傳感器數(shù)據(jù)、社交網(wǎng)絡(luò)交互數(shù)據(jù)及移動 互聯(lián)網(wǎng)數(shù)據(jù)等方式獲得的各種類型的結(jié)構(gòu)化、半結(jié)構(gòu)化(或稱之為弱結(jié)構(gòu) 化)及非結(jié)構(gòu)化的海量數(shù)據(jù),是大數(shù)據(jù)知識服務(wù)模型的根木。重
2、點要突破 分布式高速高可靠數(shù)據(jù)爬取或采集、高速數(shù)據(jù)全映像等大數(shù)據(jù)收集技 術(shù);突破高速數(shù)據(jù)解析、轉(zhuǎn)換與裝載等大數(shù)據(jù)整合技術(shù);設(shè)計質(zhì)量評估 模型,開發(fā)數(shù)據(jù)質(zhì)量技術(shù)。大數(shù)據(jù)采集一般分為大數(shù)據(jù)智能感知層:主要包扌舌數(shù)據(jù)傳感體系、網(wǎng) 絡(luò)通信體系、傳感適配體系、智能識別體系及軟硬件資源接入系統(tǒng),實現(xiàn) 對結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化的海量數(shù)據(jù)的智能化識別、定位、跟蹤、 接入、傳輸、信號轉(zhuǎn)換、監(jiān)控、初步處理和管理等。必須著重攻克針對大 數(shù)據(jù)源的智能識別、感知、適配、傳輸、接入等技術(shù)?;A(chǔ)支撐層:提供 大數(shù)據(jù)服務(wù)平臺所需的虛擬服務(wù)器,結(jié)構(gòu)化、半結(jié)構(gòu)化及非結(jié)構(gòu)化數(shù)據(jù)的 數(shù)據(jù)庫及物聯(lián)網(wǎng)絡(luò)資源等基礎(chǔ)支撐環(huán)境。重點攻克分
3、布式虛擬存儲技術(shù), 大數(shù)據(jù)獲取、存儲、組織、分析和決策操作的可視化接口技術(shù),大數(shù)據(jù)的 網(wǎng)絡(luò)傳輸與壓縮技術(shù),大數(shù)據(jù)隱私保護技術(shù)等。二、大數(shù)據(jù)預處理技術(shù)主要完成對己接收數(shù)據(jù)的辨析、抽取、清洗等操作。1)抽?。阂颢@取 的數(shù)據(jù)可能具有多種結(jié)構(gòu)和類型,數(shù)據(jù)抽取過程可以幫助我們將這些復雜 的數(shù)據(jù)轉(zhuǎn)化為單一的或者便于處理的構(gòu)型,以達到快速分析處理的目的。2)清洗:對于大數(shù)據(jù),并不全是有價值的,有些數(shù)據(jù)并不是我們所關(guān)心的 內(nèi)容,而另一些數(shù)據(jù)則是完全錯誤的干擾項,因此要對數(shù)據(jù)通過過濾“去 噪”從而提取出有效數(shù)據(jù)。三、大數(shù)據(jù)存儲及管理技術(shù)大數(shù)據(jù)存儲與管理要用存儲器把采集到的數(shù)據(jù)存儲起來,建立相應(yīng)的數(shù) 據(jù)庫,并進行
4、管理和調(diào)用。重點解決復朵結(jié)構(gòu)化、半結(jié)構(gòu)化和非結(jié)構(gòu)化大 數(shù)據(jù)管理與處理技術(shù)。主要解決大數(shù)據(jù)的可存儲、可表示、可處理、可靠 性及有效傳輸?shù)葞讉€關(guān)鍵問題。開發(fā)可靠的分布式文件系統(tǒng)(DFS)、能 效優(yōu)化的存儲、計算融入存儲、大數(shù)據(jù)的去冗余及高效低成木的大數(shù)據(jù) 存儲技術(shù);突破分布式非關(guān)系型大數(shù)據(jù)管理與處理技術(shù),異構(gòu)數(shù)據(jù)的數(shù) 據(jù)融合技術(shù),數(shù)據(jù)組織技術(shù),研究大數(shù)據(jù)建模技術(shù);突破大數(shù)據(jù)索引技 術(shù);突破大數(shù)據(jù)移動、備份、復制等技術(shù);開發(fā)大數(shù)據(jù)可視化技術(shù)。開發(fā)新型數(shù)據(jù)庫技術(shù),數(shù)據(jù)庫分為關(guān)系型數(shù)據(jù)庫、非關(guān)系型數(shù)據(jù)庫以 及數(shù)據(jù)庫緩存系統(tǒng)。其中,非關(guān)系型數(shù)據(jù)庫主要指的是NoSQL數(shù)據(jù)庫,分 為:鍵值數(shù)據(jù)庫、列存數(shù)據(jù)庫、
5、圖存數(shù)據(jù)庫以及文檔數(shù)據(jù)庫等類型。關(guān)系 型數(shù)據(jù)庫包含了傳統(tǒng)關(guān)系數(shù)據(jù)庫系統(tǒng)以及NewSQL數(shù)據(jù)庫。開發(fā)大數(shù)據(jù)安全技術(shù)。改進數(shù)據(jù)銷毀、透明加解密、分布式訪問控 制、數(shù)據(jù)審計等技術(shù);突破隱私保護和推理控制、數(shù)據(jù)真?zhèn)巫R別和取 證、數(shù)據(jù)持有完整性驗證等技術(shù)。四、大數(shù)據(jù)分析及挖掘技術(shù)大數(shù)據(jù)分析技術(shù)。改進己有數(shù)據(jù)挖掘和機器學習技術(shù);開發(fā)數(shù)據(jù)網(wǎng) 絡(luò)挖掘、特異群組挖掘、圖挖掘等新型數(shù)據(jù)挖掘技術(shù);突破基于對象的 數(shù)據(jù)連接、相似性連接等大數(shù)據(jù)融合技術(shù);突破用戶興趣分析、網(wǎng)絡(luò)行 為分析、情感語義分析等面向領(lǐng)域的大數(shù)據(jù)挖掘技術(shù)。數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的實際應(yīng) 用數(shù)據(jù)中,提取隱含在其中的、人
6、們事先不知道的、但又是潛在有用的信 息和知識的過程。數(shù)據(jù)挖掘涉及的技術(shù)方法很多,有多種分類法。根據(jù)挖 掘任務(wù)可分為分類或預測模型發(fā)現(xiàn)、數(shù)據(jù)總結(jié)、聚類、關(guān)聯(lián)規(guī)則發(fā)現(xiàn)、序 列模式發(fā)現(xiàn)、依賴關(guān)系或依賴模型發(fā)現(xiàn)、異常和趨勢發(fā)現(xiàn)等等;根據(jù)挖掘 對象可分為關(guān)系數(shù)據(jù)庫、面向?qū)ο髷?shù)據(jù)庫、空間數(shù)據(jù)庫、時態(tài)數(shù)據(jù)庫、文 本數(shù)據(jù)源、多媒體數(shù)據(jù)庫、異質(zhì)數(shù)據(jù)庫、遺產(chǎn)數(shù)據(jù)庫以及環(huán)球網(wǎng)Web;根據(jù) 挖掘方法分,可粗分為:機器學習方法、統(tǒng)計方法、神經(jīng)網(wǎng)絡(luò)方法和數(shù)據(jù)庫 方法。機器學習中,可細分為:歸納學習方法(決策樹、規(guī)則歸納等)、基于 范例學習、遺傳算法等。統(tǒng)計方法中,可細分為:回歸分析(多元回歸、自 回歸等)、判別分析(貝葉
7、斯判別、費歇爾判別、非參數(shù)判別等)、聚類分析 (系統(tǒng)聚類、動態(tài)聚類等)、探索性分析(主元分析法、相關(guān)分析法等)等。 神經(jīng)網(wǎng)絡(luò)方法中,可細分為:前向神經(jīng)網(wǎng)絡(luò)(BP算法等)、自組織神經(jīng)網(wǎng)絡(luò) (自組織特征映射、競爭學習等)等。數(shù)據(jù)庫方法主要是多維數(shù)據(jù)分析或 OLAP方法,另外還有而向?qū)傩缘臍w納方法。從挖掘任務(wù)和挖掘方法的角度,著重突破:1可視化分析。數(shù)據(jù)可視化 無論對于普通用戶或是數(shù)據(jù)分析專家,都是最基本的功能。數(shù)據(jù)圖像化可 以讓數(shù)據(jù)自己說話,讓用戶直觀的感受到結(jié)果。2.數(shù)據(jù)挖掘算法。圖像化 是將機器語言翻譯給人看,而數(shù)據(jù)挖掘就是機器的母語。分割、集群、孤 立點分析還有各種各樣五花八門的算法讓我們精
8、煉數(shù)據(jù),挖掘價值。這些 算法一定要能夠應(yīng)付大數(shù)據(jù)的量,同時還具有很高的處理速度。3.預測性 分析。預測性分析可以讓分析師根據(jù)圖像化分析和數(shù)據(jù)挖掘的結(jié)果做岀一 些前瞻性判斷。4.語義引擎。語義引擎需要設(shè)計到有足夠的人工智能以足 以從數(shù)據(jù)中主動地提取信息。語言處理技術(shù)包括機器翻譯、情感分析、輿 情分析、智能輸入、問答系統(tǒng)等。5.數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理。數(shù)據(jù)質(zhì)量與管 理是管理的最佳實踐,透過標準化流程和機器對數(shù)據(jù)進行處理可以確保獲 得一個預設(shè)質(zhì)量的分析結(jié)果。六、大數(shù)據(jù)展現(xiàn)與應(yīng)用技術(shù)大數(shù)據(jù)技術(shù)能夠?qū)㈦[藏于海量數(shù)據(jù)中的信息和知識挖掘出來,為人類的 社會經(jīng)濟活動提供依據(jù),從而提高各個領(lǐng)域的運行效率,大大提高整個社 會經(jīng)濟的集約化程度。在我國,大數(shù)據(jù)將重點應(yīng)用于以下三大領(lǐng)域:商業(yè) 智能、政府決策、公共服務(wù)。例如:商業(yè)智能技術(shù),政府決策技術(shù),電信 數(shù)據(jù)信息處理與挖掘技術(shù),電網(wǎng)數(shù)據(jù)信息處理與挖掘技術(shù),氣象信息分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人信用貸款第三方擔保合同樣本
- 云存儲硬盤空間租用合同協(xié)議
- 上市公司技術(shù)合作合同模板
- 個人房屋抵押貸款合同范本
- 臨時用工安全免責合同協(xié)議
- 個人理財規(guī)劃合同書
- 專業(yè)版辦公室裝修合同模板
- 二手汽車購銷合同范本
- 云計算資源租賃與服務(wù)外包合同
- 個人住房貸款擔保合同樣本
- 中考記敘文閱讀
- 《計算機應(yīng)用基礎(chǔ)》-Excel-考試復習題庫(含答案)
- 產(chǎn)科溝通模板
- 2023-2024學年四川省成都市小學數(shù)學一年級下冊期末提升試題
- GB/T 7462-1994表面活性劑發(fā)泡力的測定改進Ross-Miles法
- GB/T 2934-2007聯(lián)運通用平托盤主要尺寸及公差
- GB/T 21709.13-2013針灸技術(shù)操作規(guī)范第13部分:芒針
- 2022年青島職業(yè)技術(shù)學院單招語文考試試題及答案解析
- 急診科進修匯報課件
- 一年級家訪記錄表(常用)
- 信息技術(shù)基礎(chǔ)ppt課件(完整版)
評論
0/150
提交評論