《我國財政收入影響因素分析》計量經(jīng)濟學(xué)論文(eviews分析)_第1頁
《我國財政收入影響因素分析》計量經(jīng)濟學(xué)論文(eviews分析)_第2頁
《我國財政收入影響因素分析》計量經(jīng)濟學(xué)論文(eviews分析)_第3頁
《我國財政收入影響因素分析》計量經(jīng)濟學(xué)論文(eviews分析)_第4頁
《我國財政收入影響因素分析》計量經(jīng)濟學(xué)論文(eviews分析)_第5頁
免費預(yù)覽已結(jié)束,剩余18頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、我國財政收入影響因素分析班級: 姓名: 學(xué)號: 指導(dǎo)教師: 完成時間:摘要:對我國財政收入影響因素進行了定量分析, 建立了數(shù) 學(xué)模型,并提出了提高我國財政收入質(zhì)量的政策建議。關(guān)鍵詞 :財政收入 實證分析 影響因素一、 引言 財政收入對于國民經(jīng)濟的運行及社會發(fā)展具有重要影響。首先, 它是一個國家各項收入得以實現(xiàn)的物質(zhì)保證。 一個國家財政收入規(guī)模 大小往往是衡量其經(jīng)濟實力的重要標志。 其次,財政收入是國家對經(jīng) 濟實行宏觀調(diào)控的重要經(jīng)濟杠桿。 宏觀調(diào)控的首要問題是社會總需求 與總供給的平衡問題, 實現(xiàn)社會總需求與總供給的平衡, 包括總量上 的平衡和結(jié)構(gòu)上的平衡兩個層次的內(nèi)容。 財政收入的杠桿既可通過

2、增 收和減收來發(fā)揮總量調(diào)控作用, 也可通過對不同財政資金繳納者的財 政負擔大小的調(diào)整,來發(fā)揮結(jié)構(gòu)調(diào)整的作用。此外,財政收入分配也 是調(diào)整國民收入初次分配格局, 實現(xiàn)社會財富公平合理分配的主要工 具。在我國,財政收入的主體是稅收收入。因此,在稅收體制及政策 不變的情況下, 財政收入會隨著經(jīng)濟繁榮而增加, 隨著經(jīng)濟衰退而下 降。我國的財政收入主要包括稅收、 國有經(jīng)濟收入、 債務(wù)收入以及其 他收入四種形式,因此,財政收入會受到不同因素的影響。從國民經(jīng) 濟部門結(jié)構(gòu)看, 財政收入又表現(xiàn)為來自各經(jīng)濟部門的收入。 財政收入 的部門構(gòu)成就是在財政收入中, 由來自國民經(jīng)濟各部門的收入所占的 不同比例來表現(xiàn)財政收

3、入來源的結(jié)構(gòu), 它體現(xiàn)國民經(jīng)濟各部門與財政收入的關(guān)系。我國財政收入主要來自于工業(yè)、農(nóng)業(yè)、商業(yè)、交通運輸和服務(wù)業(yè)等部門。因此,本文認為財政收入主要受到總稅收收入、國內(nèi)生產(chǎn)總值、 其他收入和就業(yè)人口總數(shù)的影響。二、 預(yù)設(shè)模型令財政收入 Y(億元)為被解釋變量,總稅收收入 X1 (億元)、 國內(nèi)生產(chǎn)總值 X2(億元)、其他收入 X3 (億元)、就業(yè)人口總數(shù)為 X4(萬人)為解釋變量,據(jù)此建立回歸模型。二、 數(shù)據(jù)收集從 2010 中國統(tǒng)計年鑒得到 1990-2009年每年的財政收入、 總稅收收入、國內(nèi)生產(chǎn)總值工、 其他收入和就業(yè)人口總數(shù)的統(tǒng)計數(shù)據(jù)如下:obs財政收入 Y總稅收收入 X1國內(nèi)生產(chǎn)總值 X

4、2其他收入 X3就業(yè)人口總數(shù) X419902937.12821.8618667.8299.536474919913149.482990.1721781.5240.16549119923483.373296.9126923.5265.156615219934348.954255.335333.9191.046680819945218.15126.8848197.9280.186745519956242.26038.0460793.7396.196806519967407.996909.8271176.6724.666895019978651.148234.0478973682.369820199

5、89875.959262.884402.3833.370637199911444.0810682.5889677.1925.4371394200013395.2312581.5199214.6944.9872085200116386.0415301.38109655.21218.173025200218903.6417636.45120332.71328.7473740200321715.2520017.31135822.81691.9374432200426396.4724165.68159878.32148.3275200200531649.2928778.54184937.42707.8

6、375825200638760.234804.35216314.43683.8576400200751321.7845621.97265810.34457.9676990200861330.3554223.79314045.45552.46774802009 68518.3 59521.59三、 模型建立1、 散點圖分析340506.97215.7277995350000300000250000200000150000X1X2X3X4100000500000 100003000050000700002、 單因素或多變量間關(guān)系分析YX10.9989134611X20.9934790452X30.

7、8770144886X40.9836027198Y1478539080479564415080.99891346110.99374026770.85563773470.9849352965X14785311846944782934920.99347904520.99374026770.85618358020.9862411656X29080418469128471804590.87701448860.85563773470.85618358020.8109403346X37956444782284711503810.98360271980.98493529650.98624116560.810

8、9403346X4415089349280459503811由散點圖分析和變量間關(guān)系分析可以看出被解釋變量財政收入Y 與解釋變量總稅收收入 X1、國內(nèi)生產(chǎn)總值 X2、其他收入 X3 、就 業(yè)人口總數(shù) X4 呈線性關(guān)系,因此該回歸模型設(shè)為:Y 0 1X1 2X 2 3X 3 4X 43、 模型預(yù)模擬由 eviews 做 ols 回歸得到結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 11/14/11Time: 17:51Sample: 1990 2009 Included observations: 20VariableCoefficient

9、Std. Error t-StatisticProb.C7299.5231691.814 4.3146140.0006X11.0628020.021108 50.349720.0000X20.0017700.004528 0.3910070.7013X30.8733690.119806 7.2898520.0000X4-0.1159750.026580 -4.3631600.0006R-squared0.999978Mean dependent var20556.75Adjusted R-squared0.999972S.D. dependent var19987.03S.E. of regr

10、ession106.6264Akaike info criterion12.38886Sum squared resid170537.9Schwarz criterion12.63779Log likelihood-118.8886F-statistic166897.9Durbin-Watson stat1.496517Prob(F-statistic)0.000000Y7299.5231.062802X10.001770X 20.873369X30.115975X 4(4.314614)( 50.34972 )( 0.391007)( 7.289852)( -4.363160)R20.999

11、9782R 0.999972 F166897.9 D.W 1.496517四、 模型檢驗1.計量經(jīng)濟學(xué)意義檢驗多重共線性檢驗與解決求相關(guān)系數(shù)矩陣,得到:Correlation MatrixYX1X2X3X40.99891346110.99347904520.87701448860.98360271981478539080479564415080.998913461110.99374026770.85563773470.9849352965478531846944782934920.99347904520.99374026770.85618358020.986241165690804184691

12、28471804590.87701448860.85563773470.85618358020.81094033467956444782284711503810.98360271980.98493529650.98624116560.8109403346415089349280459503811發(fā)現(xiàn)模型存在多重共線性。接下來運用逐步回歸法對模型進行 修正: 將各個解釋變量分別加入模型 ,進行一元回歸 :作Y 與X1的回歸,結(jié)果如下 :Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:02Sample: 1990

13、2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-755.6610145.2330 -5.2030940.0001X11.1449940.005760 198.79310.0000R-squared0.999545Mean dependent var20556.75Adjusted R-squared0.999519S.D. dependent var19987.03S.E. of regression438.1521Akaike info criterion15.09765Sum squa

14、red resid3455590.Schwarz criterion15.19722Log likelihood-148.9765F-statistic39518.70Durbin-Watson stat0.475046Prob(F-statistic)0.000000作Y 與X2的回歸,結(jié)果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:06Sample: 1990 2009 Included observations: 20VariableCoefficientStd. Errort-Statistic

15、Prob.C-5222.077861.2067-6.0636740.0000X20.2076890.00554837.432670.0000R-squared0.987317Mean dependent var20556.75Adjusted R-squared0.986612S.D. dependent var19987.03S.E. of regression2312.610Akaike info criterion18.42478Sum squared resid96267005Schwarz criterion18.52435Log likelihood-182.2478F-stati

16、stic1401.205Durbin-Watson stat0.188013Prob(F-statistic)0.000000作Y 與X3的回歸,結(jié)果如下Dependent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:08Sample: 1990 2009 Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C2607.879773.9988 3.3693580.0034X310.030730.294311 34.082090.0000R

17、-squared0.984740Mean dependent var20556.75Adjusted R-squared0.983893S.D. dependent var19987.03S.E. of regression2536.645Akaike info criterion18.60971Sum squared resid1.16E+08Schwarz criterion18.70929Log likelihood-184.0971F-statistic1161.589Durbin-Watson stat1.194389Prob(F-statistic)0.000000作Y 與X4的回

18、歸,結(jié)果如下 Dependent Variable: Y Method: Least SquaresDate: 11/22/11 Time: 23:08Sample: 1990 2009 Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-272959.337203.65 -7.3368940.0000X44.0974030.518467 7.9029180.0000R-squared0.776276Mean dependent var20556.75Adjusted R-squared0.76384

19、6S.D. dependent var19987.03S.E. of regression9712.824Akaike info criterion21.29492Sum squared resid1.70E+09Schwarz criterion21.39449Log likelihood-210.9492F-statistic62.45611Durbin-Watson stat0.157356Prob(F-statistic)0.000000 依據(jù)可決系數(shù)最大的原則選取 X1 作為進入回歸模型的第一個解釋 變量 ,再依次將其余變量分別代入回歸得 :作Y與X1、X2的回歸,結(jié)果如下Depen

20、dent Variable: YMethod: Least SquaresDate: 11/22/11 Time: 23:09Sample: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-188.4285239.0743 -0.7881590.4415X11.2815940.049472 25.905680.0000X2-0.0250550.009029 -2.7749080.0130R-squared0.999687Mean dependent var20556.75Adju

21、sted R-squared0.999650S.D. dependent var19987.03S.E. of regression374.0345Akaike info criterion14.82405Sum squared resid2378330.Schwarz criterion14.97341Log likelihood-145.2405F-statistic27118.20Durbin-Watson stat0.683510Prob(F-statistic)0.000000作Y與X1、X3的回歸,結(jié)果如下Dependent Variable: YMethod: Least Squ

22、aresDate: 11/22/11 Time: 23:10Sample: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-351.105483.15053 -4.2225270.0006X10.9928130.018707 53.071960.0000X31.3569360.165109 8.2184100.0000R-squared0.999908Mean dependent var20556.75Adjusted R-squared0.999898S.D. dependen

23、t var19987.03S.E. of regression202.1735Akaike info criterion13.59361Sum squared resid694859.9Schwarz criterion13.74297Log likelihood-132.9361F-statistic92839.33Durbin-Watson stat1.177765Prob(F-statistic)0.000000作Y與X1、X4的回歸,結(jié)果如下 Dependent Variable: Y Method: Least SquaresDate: 11/22/11 Time: 23:10 Sa

24、mple: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C11853.461824.522 6.4967480.0000X11.1858860.006645 178.46080.0000X4-0.1866450.026984 -6.9170030.0000R-squared0.999881Mean dependent var20556.75Adjusted R-squared0.999867S.D. dependent var19987.03S.E. of regression2

25、30.8464Akaike info criterion13.85886Sum squared resid905931.0Schwarz criterion14.00822Log likelihood-135.5886F-statistic71206.90Durbin-Watson stat1.459938Prob(F-statistic)0.000000 在滿足經(jīng)濟意義和可決系數(shù)的條件下選取 X3 作為進入模型的第二 個解釋變量 ,再次進行回歸則 :作Y與X1、X3、X2的回歸,結(jié)果如下Dependent Variable: YMethod: Least SquaresDate: 11/22

26、/11Time: 23:13Sample: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-76.04458100.1724 -0.7591370.4588X11.0859240.029801 36.438810.0000X31.2108530.133444 9.0738770.0000X2-0.0140730.003944 -3.5679010.0026R-squared0.999949Mean dependent var20556.75Adjusted R-squared0.

27、999939S.D. dependent var19987.03S.E. of regression155.5183Akaike info criterion13.10826Sum squared resid386975.0Schwarz criterion13.30741Log likelihood-127.0826F-statistic104602.9Durbin-Watson stat1.196933Prob(F-statistic)0.000000作Y與X1、X3、X4的回歸,結(jié)果如下Dependent Variable: YMethod: Least SquaresDate: 11/

28、22/11Time: 23:13Sample: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C6781.7641024.745 6.6180030.0000X11.0686420.014514 73.627640.0000X30.8910690.107949 8.2545510.0000X4-0.1076390.015451 -6.9666750.0000R-squared0.999977Mean dependent var20556.75Adjusted R-squared0.

29、999973S.D. dependent var19987.03S.E. of regression103.7654Akaike info criterion12.29900Sum squared resid172276.1Schwarz criterion12.49814Log likelihood-118.9900F-statistic234970.9Durbin-Watson stat1.451447Prob(F-statistic)0.000000 可見加入其余任何一個變量都會導(dǎo)致系數(shù)符號與經(jīng)濟意義不符,故最終修正后的回歸模型為Dependent Variable: YMethod:

30、Least SquaresDate: 11/30/11Time: 12:18Sample: 1990 2009Included observations: 20VariableCoefficientStd. Error t-StatisticProb.C-351.105483.15053 -4.2225270.0006X10.9928130.018707 53.071960.0000X31.3569360.165109 8.2184100.0000R-squared0.999908Mean dependent var20556.75Adjusted R-squared0.999898S.D.

31、dependent var19987.03S.E. of regression202.1735Akaike info criterion13.59361Sum squared resid694859.9Schwarz criterion13.74297Log likelihood-132.9361F-statistic92839.33Durbin-Watson stat1.177765 Prob(F-statistic)0.000000Y 351.1054 0.992813X1 1.356936 X 3 (-4.222527)( 53.07196)( 8.218410)22 R2 0.9999

32、08 R 0.999898 F 92839.33 D.W 1.177765異方差檢驗與修正 圖示法 ee與 X1的散點圖如下:20000016000012000080000400000 10000 20000 30000 40000 50000 600000X1說明 ee與 X1存在單調(diào)遞增型異方差性。10.6889310.718727947.5750.000000ee與 X3的散點圖如下:200000160000120000800004000000 2000 4000 6000 8000X3說明 ee與 X3存在單調(diào)遞增型異方差性。 G-Q 檢驗對 20 組數(shù)據(jù)剔除掉中間四組剩下的進行分組后

33、,第一組( 1990-1997 )數(shù)據(jù)的回歸結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 11/30/11 Time: 12:54Sample: 1990 1997Included observations: 8VariableCoefficientStd. Errort-StatisticProb.X10.9841230.01625560.543200.0000X30.8515180.1566885.4344720.0029C-28.3427545.36993-0.6247030.5596R-squared0.999686Mean de

34、pendent var5179.791Adjusted R-squared0.999560S.D. dependent var2099.840S.E. of regression44.05899Akaike info criterionSum squared resid9705.972Schwarz criterionLog likelihood-39.75573F-statisticDurbin-Watson stat1.663630Prob(F-statistic)殘差平方和 RSS1=9705.972第二組( 2002-2009 )數(shù)據(jù)的回歸結(jié)果:Dependent Variable:

35、YMethod: Least SquaresDate: 11/30/11 Time: 12:55Sample: 2002 2009Included observations: 8VariableCoefficientStd. Errort-StatisticProb.X11.0664040.02774738.433210.0000X30.8472280.2151143.9385030.0110C-1184.159261.8258-4.5226980.0063R-squared0.999932Mean dependent var39824.41Adjusted R-squared0.999905

36、S.D. dependent var18639.16S.E. of regression182.0047Akaike info criterion13.52594Sum squared resid165628.5Schwarz criterion13.55573Log likelihood-51.10375F-statistic36705.08Durbin-Watson stat1.326122Prob(F-statistic)0.000000殘差平方和 RSS2= 165628.5所以 F= RSS2/RSS1= 165628.5/9705.972=17.0646 在給定 =5%下查得臨界值

37、 F0.05(4,4) 6.39, F F0.05(4,4) 因此否定兩組子樣方差相同的假設(shè),從而該總體隨機項存在遞增 異方差性。 White 方法檢驗White Heteroskedasticity Test:F-statistic6.142010Probability0.003919Obs*R-squared12.41812Probability0.014498Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 11/30/11 Time: 13:21Sample: 1990 2009Included obs

38、ervations: 20VariableCoefficientStd. Error t-StatisticProb.C24856.5019211.30 1.2938480.2153X1-20.573277.549127 -2.7252520.0156X120.0002128.04E-05 2.6399820.0186X3237.181378.61323 3.0170670.0087X32-0.0240730.006568 -3.6652300.0023R-squared0.620906Mean dependent var34743.00Adjusted R-squared0.519815S.

39、D. dependent var49156.00S.E. of regression34062.86Akaike info criterion23.92212Sum squared resid1.74E+10Schwarz criterion24.17105Log likelihood-234.2212F-statistic6.142010Durbin-Watson stat1.560937Prob(F-statistic)0.0039192n R2 20 0.620906 12.41812=5%下,臨界值 20.05(4) 9.488 拒絕同方差性 修正Dependent Variable:

40、 YMethod: Least SquaresDate: 11/30/11Time: 14:29Sample: 1990 2009Included observations: 20Weighting series: 1/E1VariableCoefficientStd. Errort-StatisticProb.C-314.207443.68550-7.1924860.0000X10.9797580.008622113.63360.0000X31.4572910.06592222.106290.0000Weighted StatisticsR-squared0.999999 Mean depe

41、ndent var27246.27Adjusted R-squared0.999999 S.D. dependent var74471.17S.E. of regression 73.91795 Akaike info criterion 11.58127Sum squared resid92885.67Schwarz criterion11.73063Log likelihood-112.8127F-statistic3138195.Durbin-Watson stat0.956075Prob(F-statistic)0.000000Unweighted StatisticsR-square

42、d0.999902Mean dependent var20556.75Adjusted R-squared0.999891S.D. dependent var19987.03S.E. of regression209.0283Sum squared resid742778.2Durbin-Watson stat1.365483Y 314.20740.979758 X1 1.457291X 3(-7.192486)( 113.6336) ( 22.10629)2R2 0.9999992R 0.999999 F 3138195 D.W 1.365483序列相關(guān)性檢驗從殘差項 e2與e2(-1) 及

43、e與時間 t的關(guān)系圖(如下)看,隨機項 呈現(xiàn)正序列相關(guān)性。600400200(-120-200-400-600 -400 -200 0 200 400 600E2-600由圖可以看出,存在一階序列相關(guān)回歸檢驗殘差e2與e2( -1 )做回歸得:Dependent Variable: EMethod: Least SquaresDate: 12/04/11Time: 15:21Sample (adjusted): 1991 2009Included observations: 19 after adjustmentsVariableCoefficientStd. Error t-Statisti

44、cProb.C16.8152545.69611 0.3679800.7174E(-1)0.3035700.231114 1.3135080.2065R-squared0.092138Mean dependent var25.28519Adjusted R-squared0.038734S.D. dependent var201.1252S.E. of regression197.1916Akaike info criterion13.50553Sum squared resid661036.6Schwarz criterion13.60494Log likelihood-126.3025F-s

45、tatistic1.725303Durbin-Watson stat1.776498Prob(F-statistic)0.206464e與 e(-1) 、e(-2) 做回歸得:Dependent Variable: EMethod: Least SquaresDate: 12/04/11 Time: 15:24Sample (adjusted): 1992 2009Included observations: 18 after adjustmentsVariableCoefficientStd. Error t-StatisticProb.C7.44976046.20912 0.1612180

46、.8741E(-1)0.4195640.244475 1.7161870.1067E(-2)-0.3798940.278641 -1.3633800.1929R-squared0.192570Mean dependent var16.45940Adjusted R-squared0.084912S.D. dependent var203.1349S.E. of regression194.3193Akaike info criterion13.52789Sum squared resid566399.7Schwarz criterion13.67629Log likelihood-118.75

47、10F-statistic1.788727Durbin-Watson stat2.055382Prob(F-statistic)0.201043由上表明不存在序列相關(guān)性。 D.W檢驗由異方差檢驗修正后的結(jié)果:Y 314.2074 0.979758 X1 1.457291X 3 22R2 0.999999 R 0.999999 F 3138195 D.W 1.365483得D.W=1.365483取 =5%,由于 n=20,k=3(包含常數(shù)項 ) ,查表得:dl =1.10 , du=1.54由于dlDW=1.365483 du ,故: 序列相關(guān)性不確定。 拉格朗日檢驗Dependent Var

48、iable: EMethod: Least SquaresDate: 12/04/11 Time: 15:05Sample (adjusted): 1992 2009Included observations: 18 after adjustmentsVariableCoefficientStd. Error t-StatisticProb.Y0.0009840.002548 0.3862170.7051C-14.1479273.42247 -0.1926920.8500E(-1)0.3920090.261633 1.4983160.1563E(-2)-0.3477300.298739 -1.

49、1639920.2639R-squared0.201082Mean dependent var16.45940Adjusted R-squared0.029885S.D. dependent var203.1349S.E. of regression200.0765Akaike info criterion13.62841Sum squared resid560428.6Schwarz criterion13.82627Log likelihood-118.6557F-statistic1.174565Durbin-Watson stat2.010385Prob(F-statistic)0.3

50、546792LM n* R2 20 0.201082 4.02164取 =5%, 2 分布的臨界值 20.05 (3) 7.815LM 20.05 (3)故 : 存在序列相關(guān)。 修正為了更好的提高模型的精度,我們用廣義差分法對模型進行修正首先用杜賓( durbin )兩步法估計Dependent Variable: YMethod: Least SquaresDate: 12/04/11Time: 16:18Sample (adjusted): 1992 2009Included observations: 18 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-36.8579081.18933-0.4539750.6606Y(-1)0.7306100.3453042.1158470.0635Y(-2)0.3581040.3645190.9824020.3516X11.0973550.03037736.124880.0000X1(-1)-0.8724

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論