版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高中高考數(shù)學(xué)錯(cuò)題集精講精析“會(huì)而不對(duì),對(duì)而不全”一直以來成為制約學(xué)生數(shù)學(xué)成績(jī)提高的重要因素,成為學(xué)生揮之不去的痛,如何解決這個(gè)問題對(duì)決定學(xué)生的高考成敗起著至關(guān)重要的作用。本文結(jié)合筆者的多年高三教學(xué)經(jīng)驗(yàn)精心挑選學(xué)生在考試中常見的66個(gè)易錯(cuò)、易混、易忘典型題目,這些問題也是高考中的熱點(diǎn)和重點(diǎn),做到力避偏、怪、難,進(jìn)行精彩剖析并配以近幾年的高考試題作為相應(yīng)練習(xí),一方面讓你明確這樣的問題在高考中確實(shí)存在,另一方面通過作針對(duì)性練習(xí)幫你識(shí)破命題者精心設(shè)計(jì)的陷阱,以達(dá)到授人以漁的目的,助你在高考中乘風(fēng)破浪,實(shí)現(xiàn)自已的理想報(bào)負(fù)。【易錯(cuò)點(diǎn)1】忽視空集是任何非空集合的子集導(dǎo)致思維不全面。例1、 設(shè),若,求實(shí)數(shù)a組
2、成的集合的子集有多少個(gè)?【易錯(cuò)點(diǎn)分析】此題由條件易知,由于空集是任何非空集合的子集,但在解題中極易忽略這種特殊情況而造成求解滿足條件的a值產(chǎn)生漏解現(xiàn)象。解析:集合A化簡(jiǎn)得,由知故()當(dāng)時(shí),即方程無解,此時(shí)a=0符合已知條件()當(dāng)時(shí),即方程的解為3或5,代入得或。綜上滿足條件的a組成的集合為,故其子集共有個(gè)?!局R(shí)點(diǎn)歸類點(diǎn)拔】(1)在應(yīng)用條件ABAB時(shí),要樹立起分類討論的數(shù)學(xué)思想,將集合是空集的情況優(yōu)先進(jìn)行討論(2)在解答集合問題時(shí),要注意集合的性質(zhì)“確定性、無序性、互異性”特別是互異性對(duì)集合元素的限制。有時(shí)需要進(jìn)行檢驗(yàn)求解的結(jié)果是滿足集合中元素的這個(gè)性質(zhì),此外,解題過程中要注意集合語言(數(shù)學(xué)語
3、言)和自然語言之間的轉(zhuǎn)化如:,其中,若求r的取值范圍。將集合所表達(dá)的數(shù)學(xué)語言向自然語言進(jìn)行轉(zhuǎn)化就是:集合A表示以原點(diǎn)為圓心以2的半徑的圓,集合B表示以(3,4)為圓心,以r為半徑的圓,當(dāng)兩圓無公共點(diǎn)即兩圓相離或內(nèi)含時(shí),求半徑r的取值范圍。思維馬上就可利用兩圓的位置關(guān)系來解答。此外如不等式的解集等也要注意集合語言的應(yīng)用。【練1】已知集合、,若,則實(shí)數(shù)a的取值范圍是。答案:或?!疽族e(cuò)點(diǎn)2】求解函數(shù)值域或單調(diào)區(qū)間易忽視定義域優(yōu)先的原則。例2、已知,求的取值范圍【易錯(cuò)點(diǎn)分析】此題學(xué)生很容易只是利用消元的思路將問題轉(zhuǎn)化為關(guān)于x的函數(shù)最值求解,但極易忽略x、y滿足這個(gè)條件中的兩個(gè)變量的約束關(guān)系而造成定義域
4、范圍的擴(kuò)大。解析:由于得(x+2)2=1-1,-3x-1從而x2+y2=-3x2-16x-12=+因此當(dāng)x=-1時(shí)x2+y2有最小值1, 當(dāng)x=-時(shí),x2+y2有最大值。故x2+y2的取值范圍是1,【知識(shí)點(diǎn)歸類點(diǎn)拔】事實(shí)上我們可以從解析幾何的角度來理解條件對(duì)x、y的限制,顯然方程表示以(-2,0)為中心的橢圓,則易知-3x-1,。此外本題還可通過三角換元轉(zhuǎn)化為三角最值求解?!揪?】(05高考重慶卷)若動(dòng)點(diǎn)(x,y)在曲線上變化,則的最大值為()(A)(B)(C)(D)答案:A【易錯(cuò)點(diǎn)3】求解函數(shù)的反函數(shù)易漏掉確定原函數(shù)的值域即反函數(shù)的定義域。例3、 是R上的奇函數(shù),(1)求a的值(2)求的反函
5、數(shù)【易錯(cuò)點(diǎn)分析】求解已知函數(shù)的反函數(shù)時(shí),易忽略求解反函數(shù)的定義域即原函數(shù)的值域而出錯(cuò)。解析:(1)利用(或)求得a=1.(2)由即,設(shè),則由于故,而所以【知識(shí)點(diǎn)歸類點(diǎn)拔】(1)在求解函數(shù)的反函數(shù)時(shí),一定要通過確定原函數(shù)的值域即反函數(shù)的定義域在反函數(shù)的解析式后表明(若反函數(shù)的定義域?yàn)镽可省略)。(2)應(yīng)用可省略求反函數(shù)的步驟,直接利用原函數(shù)求解但應(yīng)注意其自變量和函數(shù)值要互換?!揪?】(2004全國(guó)理)函數(shù)的反函數(shù)是()A、 B、C、 D、答案:B【易錯(cuò)點(diǎn)4】求反函數(shù)與反函數(shù)值錯(cuò)位例4、已知函數(shù),函數(shù)的圖像與的圖象關(guān)于直線對(duì)稱,則的解析式為()A、 B、 C、 D、【易錯(cuò)點(diǎn)分析】解答本題時(shí)易由與互
6、為反函數(shù),而認(rèn)為的反函數(shù)是則=而錯(cuò)選A。解析:由得從而再求的反函數(shù)得。正確答案:B【知識(shí)點(diǎn)分類點(diǎn)拔】函數(shù)與函數(shù)并不互為反函數(shù),他只是表示中x用x-1替代后的反函數(shù)值。這是因?yàn)橛汕蠓春瘮?shù)的過程來看:設(shè)則,再將x、y互換即得的反函數(shù)為,故的反函數(shù)不是,因此在今后求解此題問題時(shí)一定要謹(jǐn)慎?!揪?】(2004高考福建卷)已知函數(shù)y=log2x的反函數(shù)是y=f-1(x),則函數(shù)y= f-1(1-x)的圖象是()答案:B【易錯(cuò)點(diǎn)5】判斷函數(shù)的奇偶性忽視函數(shù)具有奇偶性的必要條件:定義域關(guān)于原點(diǎn)對(duì)稱。例5、 判斷函數(shù)的奇偶性?!疽族e(cuò)點(diǎn)分析】此題常犯的錯(cuò)誤是不考慮定義域,而按如下步驟求解:從而得出函數(shù)為非奇非偶
7、函數(shù)的錯(cuò)誤結(jié)論。解析:由函數(shù)的解析式知x滿足即函數(shù)的定義域?yàn)槎x域關(guān)于原點(diǎn)對(duì)稱,在定義域下易證即函數(shù)為奇函數(shù)?!局R(shí)點(diǎn)歸類點(diǎn)拔】(1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件,因此在判斷函數(shù)的奇偶性時(shí)一定要先研究函數(shù)的定義域。(2)函數(shù)具有奇偶性,則是對(duì)定義域內(nèi)x的恒等式。常常利用這一點(diǎn)求解函數(shù)中字母參數(shù)的值?!揪?】判斷下列函數(shù)的奇偶性:答案:既是奇函數(shù)又是偶函數(shù)非奇非偶函數(shù)非奇非偶函數(shù)【易錯(cuò)點(diǎn)6】易忘原函數(shù)和反函數(shù)的單調(diào)性和奇偶性的關(guān)系。從而導(dǎo)致解題過程繁鎖。例6、 函數(shù)的反函數(shù)為,證明是奇函數(shù)且在其定義域上是增函數(shù)?!舅季S分析】可求的表達(dá)式,再證明。若注意到與具有相同的
8、單調(diào)性和奇偶性,只需研究原函數(shù)的單調(diào)性和奇偶性即可。解析:,故為奇函數(shù)從而為奇函數(shù)。又令在和上均為增函數(shù)且為增函數(shù),故在和上分別為增函數(shù)。故分別在和上分別為增函數(shù)?!局R(shí)點(diǎn)歸類點(diǎn)拔】對(duì)于反函數(shù)知識(shí)有如下重要結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。(2)奇函數(shù)的反函數(shù)也是奇函數(shù)且原函數(shù)和反函數(shù)具有相同的單調(diào)性。(3)定義域?yàn)榉菃卧氐呐己瘮?shù)不存在反函數(shù)。(4)周期函數(shù)不存在反函數(shù)(5)原函數(shù)的定義域和值域和反函數(shù)的定義域和值域到換。即 。【練6】(1)(99全國(guó)高考題)已知 ,則如下結(jié)論正確的是()A、 是奇函數(shù)且為增函數(shù) B、 是奇函數(shù)且為減函數(shù)C、 是偶函數(shù)且為增函數(shù) D、 是偶函數(shù)且為減
9、函數(shù)答案:A(2)(2005天津卷)設(shè)是函數(shù)的反函數(shù),則使成立的的取值范圍為()A、 B、 C、 D、答案:A(時(shí),單調(diào)增函數(shù),所以.)【易錯(cuò)點(diǎn)7】證明或判斷函數(shù)的單調(diào)性要從定義出發(fā),注意步驟的規(guī)范性及樹立定義域優(yōu)先的原則。例7、試判斷函數(shù)的單調(diào)性并給出證明?!疽族e(cuò)點(diǎn)分析】在解答題中證明或判斷函數(shù)的單調(diào)性必須依據(jù)函數(shù)的性質(zhì)解答。特別注意定義中的的任意性。以及函數(shù)的單調(diào)區(qū)間必是函數(shù)定義域的子集,要樹立定義域優(yōu)先的意識(shí)。解析:由于即函數(shù)為奇函數(shù),因此只需判斷函數(shù)在上的單調(diào)性即可。設(shè) , 由于 故當(dāng) 時(shí),此時(shí)函數(shù)在上增函數(shù),同理可證函數(shù)在上為減函數(shù)。又由于函數(shù)為奇函數(shù),故函數(shù)在為減函數(shù),在為增函數(shù)。
10、綜上所述:函數(shù)在和上分別為增函數(shù),在和上分別為減函數(shù).【知識(shí)歸類點(diǎn)拔】(1)函數(shù)的單調(diào)性廣泛應(yīng)用于比較大小、解不等式、求參數(shù)的范圍、最值等問題中,應(yīng)引起足夠重視。(2)單調(diào)性的定義等價(jià)于如下形式:在上是增函數(shù),在上是減函數(shù),這表明增減性的幾何意義:增(減)函數(shù)的圖象上任意兩點(diǎn)連線的斜率都大于(小于)零。(3)是一種重要的函數(shù)模型,要引起重視并注意應(yīng)用。但注意本題中不能說在上為增函數(shù),在上為減函數(shù),在敘述函數(shù)的單調(diào)區(qū)間時(shí)不能在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“”和“或”,【練7】(1) (濰坊市統(tǒng)考題)(1)用單調(diào)性的定義判斷函數(shù)在上的單調(diào)性。(2)設(shè)在的最小值為,求的解析式。答案:(1)函數(shù)在為增函數(shù)
11、在為減函數(shù)。(2)(2) (2001天津)設(shè)且為R上的偶函數(shù)。(1)求a的值(2)試判斷函數(shù)在上的單調(diào)性并給出證明。答案:(1)(2)函數(shù)在上為增函數(shù)(證明略)【易錯(cuò)點(diǎn)8】在解題中誤將必要條件作充分條件或?qū)⒓炔怀浞峙c不必要條件誤作充要條件使用,導(dǎo)致錯(cuò)誤結(jié)論。例8、(2004全國(guó)高考卷)已知函數(shù)上是減函數(shù),求a的取值范圍?!疽族e(cuò)點(diǎn)分析】是在內(nèi)單調(diào)遞減的充分不必要條件,在解題過程中易誤作是充要條件,如在R上遞減,但。解析:求函數(shù)的導(dǎo)數(shù)(1)當(dāng)時(shí),是減函數(shù),則故解得。(2)當(dāng)時(shí),易知此時(shí)函數(shù)也在R上是減函數(shù)。(3)當(dāng)時(shí),在R上存在一個(gè)區(qū)間在其上有,所以當(dāng)時(shí),函數(shù)不是減函數(shù),綜上,所求a的取值范圍是。
12、【知識(shí)歸類點(diǎn)拔】若函數(shù)可導(dǎo),其導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系現(xiàn)以增函數(shù)為例來說明:與為增函數(shù)的關(guān)系:能推出為增函數(shù),但反之不一定。如函數(shù)在上單調(diào)遞增,但,是為增函數(shù)的充分不必要條件。時(shí),與為增函數(shù)的關(guān)系:若將的根作為分界點(diǎn),因?yàn)橐?guī)定,即摳去了分界點(diǎn),此時(shí)為增函數(shù),就一定有。當(dāng)時(shí),是為增函數(shù)的充分必要條件。與為增函數(shù)的關(guān)系:為增函數(shù),一定可以推出,但反之不一定,因?yàn)?,即為或。?dāng)函數(shù)在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù),函數(shù)不具有單調(diào)性。是為增函數(shù)的必要不充分條件。函數(shù)的單調(diào)性是函數(shù)一條重要性質(zhì),也是高中階段研究的重點(diǎn),我們一定要把握好以上三個(gè)關(guān)系,用導(dǎo)數(shù)判斷好函數(shù)的單調(diào)性。因此新教材為解決單調(diào)區(qū)間的端點(diǎn)問題,都
13、一律用開區(qū)間作為單調(diào)區(qū)間,避免討論以上問題,也簡(jiǎn)化了問題。但在實(shí)際應(yīng)用中還會(huì)遇到端點(diǎn)的討論問題,要謹(jǐn)慎處理。因此本題在第一步后再對(duì)和進(jìn)行了討論,確保其充要性。在解題中誤將必要條件作充分條件或?qū)⒓炔怀浞峙c不必要條件誤作充要條件使用而導(dǎo)致的錯(cuò)誤還很多,這需要同學(xué)們?cè)趯W(xué)習(xí)過程中注意思維的嚴(yán)密性?!揪?】(1)(2003新課程)函數(shù)是是單調(diào)函數(shù)的充要條件是()A、 B、 C、 D、答案:A(2)是否存在這樣的K值,使函數(shù)在上遞減,在上遞增?答案:。(提示據(jù)題意結(jié)合函數(shù)的連續(xù)性知,但是函數(shù)在上遞減,在上遞增的必要條件,不一定是充分條件因此由求出K值后要檢驗(yàn)。)【易錯(cuò)點(diǎn)9】應(yīng)用重要不等式確定最值時(shí),忽視應(yīng)
14、用的前提條件特別是易忘判斷不等式取得等號(hào)時(shí)的變量值是否在定義域限制范圍之內(nèi)。例9、 已知:a>0 , b>0 , a+b=1,求(a+)2+(b+)2的最小值。錯(cuò)解:(a+)2+(b+)2=a2+b2+42ab+44+4=8(a+)2+(b+)2的最小值是8【易錯(cuò)點(diǎn)分析】 上面的解答中,兩次用到了基本不等式a2+b22ab,第一次等號(hào)成立的條件是a=b=,第二次等號(hào)成立的條件ab=,顯然,這兩個(gè)條件是不能同時(shí)成立的。因此,8不是最小值。解析:原式= a2+b2+4=( a2+b2)+(+)+4=(a+b)2-2ab+ (+)2-+4=(1-2ab)(1+)+4由ab()2= 得:1
15、-2ab1-=,且16,1+17原式×17+4= (當(dāng)且僅當(dāng)a=b=時(shí),等號(hào)成立)(a+)2+(b+)2的最小值是?!局R(shí)歸類點(diǎn)拔】在應(yīng)用重要不等式求解最值時(shí),要注意它的三個(gè)前提條件缺一不可即“一正、二定、三相等”,在解題中容易忽略驗(yàn)證取提最值時(shí)的使等號(hào)成立的變量的值是否在其定義域限制范圍內(nèi)?!揪?】(97全國(guó)卷文22理22)甲、乙兩地相距s km , 汽車從甲地勻速行駛到乙地,速度不得超過c km/h ,已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b;固定部分為a元。(1) 把全程運(yùn)輸成本y(元)表示為速度v(
16、km/h)的函數(shù),并指出這個(gè)函數(shù)的定義域;(2) 為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?答案為:(1)(2)使全程運(yùn)輸成本最小,當(dāng)c時(shí),行駛速度v=;當(dāng)c時(shí),行駛速度v=c?!疽族e(cuò)點(diǎn)10】在涉及指對(duì)型函數(shù)的單調(diào)性有關(guān)問題時(shí),沒有根據(jù)性質(zhì)進(jìn)行分類討論的意識(shí)和易忽略對(duì)數(shù)函數(shù)的真數(shù)的限制條件。例10、是否存在實(shí)數(shù)a使函數(shù)在上是增函數(shù)?若存在求出a的值,若不存在,說明理由。【易錯(cuò)點(diǎn)分析】本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性及復(fù)合函數(shù)的單調(diào)性判斷方法,在解題過程中易忽略對(duì)數(shù)函數(shù)的真數(shù)大于零這個(gè)限制條件而導(dǎo)致a的范圍擴(kuò)大。解析:函數(shù)是由和復(fù)合而成的,根據(jù)復(fù)合函數(shù)的單調(diào)性的判斷方法(1)當(dāng)a>1時(shí),若
17、使在上是增函數(shù),則在上是增函數(shù)且大于零。故有解得a>1。(2)當(dāng)a<1時(shí)若使在上是增函數(shù),則在上是減函數(shù)且大于零。不等式組無解。綜上所述存在實(shí)數(shù)a>1使得函數(shù)在上是增函數(shù)【知識(shí)歸類點(diǎn)拔】要熟練掌握常用初等函數(shù)的單調(diào)性如:一次函數(shù)的單調(diào)性取決于一次項(xiàng)系數(shù)的符號(hào),二次函數(shù)的單調(diào)性決定于二次項(xiàng)系數(shù)的符號(hào)及對(duì)稱軸的位置,指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性決定于其底數(shù)的范圍(大于1還是小于1),特別在解決涉及指、對(duì)復(fù)合函數(shù)的單調(diào)性問題時(shí)要樹立分類討論的數(shù)學(xué)思想(對(duì)數(shù)型函數(shù)還要注意定義域的限制)?!揪?0】(1)(黃崗三月分統(tǒng)考變式題)設(shè),且試求函數(shù)的的單調(diào)區(qū)間。答案:當(dāng),函數(shù)在上單調(diào)遞減在上單
18、調(diào)遞增當(dāng)函數(shù)在上單調(diào)遞增在上單調(diào)遞減。(2)(2005 高考天津)若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則的取值范圍是()A、 B、 C、 D、答案:B.(記,則當(dāng)時(shí),要使得是增函數(shù),則需有恒成立,所以.矛盾.排除C、D當(dāng)時(shí),要使是函數(shù),則需有恒成立,所以.排除A)【易錯(cuò)點(diǎn)11】 用換元法解題時(shí),易忽略換元前后的等價(jià)性例11、已知求的最大值【易錯(cuò)點(diǎn)分析】此題學(xué)生都能通過條件將問題轉(zhuǎn)化為關(guān)于的函數(shù),進(jìn)而利用換元的思想令將問題變?yōu)殛P(guān)于t的二次函數(shù)最值求解。但極易忽略換元前后變量的等價(jià)性而造成錯(cuò)解,解析:由已知條件有且(結(jié)合)得,而=令則原式=根據(jù)二次函數(shù)配方得:當(dāng)即時(shí),原式取得最大值?!局R(shí)點(diǎn)歸類點(diǎn)拔】“知識(shí)”
19、是基礎(chǔ),“方法”是手段,“思想”是深化,提高數(shù)學(xué)素質(zhì)的核心就是提高學(xué)生對(duì)數(shù)學(xué)思想方法的認(rèn)識(shí)和運(yùn)用,數(shù)學(xué)素質(zhì)的綜合體現(xiàn)就是“能力”,解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡(jiǎn)單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來?;蛘咦?yōu)槭煜さ男问?,把?fù)雜的計(jì)算和推證簡(jiǎn)化?!揪?1】(1)(高考變式題)設(shè)a>0
20、,000求f(x)2a(sinxcosx)sinx·cosx2a的最大值和最小值。答案:f(x)的最小值為2a2a,最大值為(2)不等式>ax的解集是(4,b),則a_,b_。答案:(提示令換元原不等式變?yōu)殛P(guān)于t的一元二次不等式的解集為)【易錯(cuò)點(diǎn)12】已知求時(shí), 易忽略n的情況例12、(2005高考北京卷)數(shù)列前n項(xiàng)和且。(1)求的值及數(shù)列的通項(xiàng)公式?!疽族e(cuò)點(diǎn)分析】此題在應(yīng)用與的關(guān)系時(shí)誤認(rèn)為對(duì)于任意n值都成立,忽略了對(duì)n=1的情況的驗(yàn)證。易得出數(shù)列為等比數(shù)列的錯(cuò)誤結(jié)論。解析:易求得。由得故得又,故該數(shù)列從第二項(xiàng)開始為等比數(shù)列故?!局R(shí)點(diǎn)歸類點(diǎn)拔】對(duì)于數(shù)列與之間有如下關(guān)系:利用兩
21、者之間的關(guān)系可以已知求。但注意只有在當(dāng)適合時(shí)兩者才可以合并否則要寫分段函數(shù)的形式?!揪?2】(2004全國(guó)理)已知數(shù)列滿足則數(shù)列的通項(xiàng)為。答案:(將條件右端視為數(shù)列的前n-1項(xiàng)和利用公式法解答即可)【易錯(cuò)點(diǎn)13】利用函數(shù)知識(shí)求解數(shù)列的最大項(xiàng)及前n項(xiàng)和最大值時(shí)易忽略其定義域限制是正整數(shù)集或其子集(從1開始)例13、等差數(shù)列的首項(xiàng),前n項(xiàng)和,當(dāng)時(shí),。問n為何值時(shí)最大?【易錯(cuò)點(diǎn)分析】等差數(shù)列的前n項(xiàng)和是關(guān)于n的二次函數(shù),可將問題轉(zhuǎn)化為求解關(guān)于n的二次函數(shù)的最大值,但易忘記此二次函數(shù)的定義域?yàn)檎麛?shù)集這個(gè)限制條件。解析:由題意知=此函數(shù)是以n為變量的二次函數(shù),因?yàn)椋?dāng)時(shí),故即此二次函數(shù)開口向下,故由得
22、當(dāng)時(shí)取得最大值,但由于,故若為偶數(shù),當(dāng)時(shí),最大。當(dāng)為奇數(shù)時(shí),當(dāng)時(shí)最大。【知識(shí)點(diǎn)歸類點(diǎn)拔】數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式都可視為定義域?yàn)檎麛?shù)集或其子集(從1開始)上的函數(shù),因此在解題過程中要樹立函數(shù)思想及觀點(diǎn)應(yīng)用函數(shù)知識(shí)解決問題。特別的等差數(shù)列的前n項(xiàng)和公式是關(guān)于n的二次函數(shù)且沒有常數(shù)項(xiàng),反之滿足形如所對(duì)應(yīng)的數(shù)列也必然是等差數(shù)列的前n項(xiàng)和。此時(shí)由知數(shù)列中的點(diǎn)是同一直線上,這也是一個(gè)很重要的結(jié)論。此外形如前n項(xiàng)和所對(duì)應(yīng)的數(shù)列必為一等比數(shù)列的前n項(xiàng)和?!揪?3】(2001全國(guó)高考題)設(shè)是等差數(shù)列,是前n項(xiàng)和,且,則下列結(jié)論錯(cuò)誤的是()A、B、C、 D、和均為的最大值。答案:C(提示利用二次函數(shù)的知識(shí)
23、得等差數(shù)列前n項(xiàng)和關(guān)于n的二次函數(shù)的對(duì)稱軸再結(jié)合單調(diào)性解答)【易錯(cuò)點(diǎn)14】解答數(shù)列問題時(shí)沒有結(jié)合等差、等比數(shù)列的性質(zhì)解答使解題思維受阻或解答過程繁瑣。例14、已知關(guān)于的方程和的四個(gè)根組成首項(xiàng)為的等差數(shù)列,求的值?!舅季S分析】注意到兩方程的兩根之和相等這個(gè)隱含條件,結(jié)合等差數(shù)列的性質(zhì)明確等差數(shù)列中的項(xiàng)是如何排列的。解析:不妨設(shè)是方程的根,由于兩方程的兩根之和相等故由等差數(shù)列的性質(zhì)知方程的另一根是此等差數(shù)列的第四項(xiàng),而方程的兩根是等差數(shù)列的中間兩項(xiàng),根據(jù)等差數(shù)列知識(shí)易知此等差數(shù)列為:故從而=?!局R(shí)點(diǎn)歸類點(diǎn)拔】等差數(shù)列和等比數(shù)列的性質(zhì)是數(shù)列知識(shí)的一個(gè)重要方面,有解題中充分運(yùn)用數(shù)列的性質(zhì)往往起到事半
24、功倍的效果。例如對(duì)于等差數(shù)列,若,則;對(duì)于等比數(shù)列,若,則;若數(shù)列是等比數(shù)列,是其前n項(xiàng)的和,那么,成等比數(shù)列;若數(shù)列是等差數(shù)列,是其前n項(xiàng)的和,那么,成等差數(shù)列等性質(zhì)要熟練和靈活應(yīng)用?!揪?4】(2003全國(guó)理天津理)已知方程和的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則=() A、1 B、 C、 D、答案:C【易錯(cuò)點(diǎn)15】用等比數(shù)列求和公式求和時(shí),易忽略公比的情況例15、數(shù)列中,數(shù)列是公比為()的等比數(shù)列。(I)求使成立的的取值范圍;(II)求數(shù)列的前項(xiàng)的和【易錯(cuò)點(diǎn)分析】對(duì)于等比數(shù)列的前n項(xiàng)和易忽略公比q=1的特殊情況,造成概念性錯(cuò)誤。再者學(xué)生沒有從定義出發(fā)研究條件數(shù)列是公比為()的等比數(shù)列得到數(shù)
25、列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)成等比數(shù)列而找不到解題突破口。使思維受阻。解:(I)數(shù)列是公比為的等比數(shù)列,由得,即(),解得(II)由數(shù)列是公比為的等比數(shù)列,得,這表明數(shù)列的所有奇數(shù)項(xiàng)成等比數(shù)列,所有偶數(shù)項(xiàng)成等比數(shù)列,且公比都是,又,當(dāng)時(shí),當(dāng)時(shí),【知識(shí)點(diǎn)歸類點(diǎn)拔】本題中拆成的兩個(gè)數(shù)列都是等比數(shù)列,其中是解題的關(guān)鍵,這種給出數(shù)列的形式值得關(guān)注。另外,不要以為奇數(shù)項(xiàng)、偶數(shù)項(xiàng)都成等比數(shù)列,且公比相等,就是整個(gè)數(shù)列成等比數(shù)列,解題時(shí)要慎重,寫出數(shù)列的前幾項(xiàng)進(jìn)行觀察就得出正確結(jié)論.對(duì)等比數(shù)列的求和一定要注意其公比為1這種特殊情況。高考往往就是在這里人為的設(shè)計(jì)陷阱使考生產(chǎn)生對(duì)現(xiàn)而不全的錯(cuò)誤?!揪?5】(2005高考全國(guó)
26、卷一第一問)設(shè)等比數(shù)列的公比為q,前n項(xiàng)和(1)求q的取值范圍。答案:【易錯(cuò)點(diǎn)16】在數(shù)列求和中對(duì)求一等差數(shù)列與一等比數(shù)列的積構(gòu)成的數(shù)列的前n項(xiàng)和不會(huì)采用錯(cuò)項(xiàng)相減法或解答結(jié)果不到位。例16、(2003北京理)已知數(shù)列是等差數(shù)列,且(1)求數(shù)列的通項(xiàng)公式(2)令求數(shù)列前項(xiàng)和的公式。【思維分析】本題根據(jù)條件確定數(shù)列的通項(xiàng)公式再由數(shù)列的通項(xiàng)公式分析可知數(shù)列是一個(gè)等差數(shù)列和一個(gè)等比數(shù)列構(gòu)成的“差比數(shù)列”,可用錯(cuò)項(xiàng)相減的方法求和。解析:(1)易求得(2)由(1)得令()則()用()減去()(注意錯(cuò)過一位再相減)得當(dāng)當(dāng)時(shí)綜上可得:當(dāng)當(dāng)時(shí)【知識(shí)點(diǎn)歸類點(diǎn)拔】一般情況下對(duì)于數(shù)列有其中數(shù)列和分別為等差數(shù)列和等比數(shù)
27、列,則其前n項(xiàng)和可通過在原數(shù)列的每一項(xiàng)的基礎(chǔ)上都乘上等比數(shù)列的公比再錯(cuò)過一項(xiàng)相減的方法來求解,實(shí)際上課本上等比數(shù)列的求和公式就是這種情況的特例。【練16】(2005全國(guó)卷一理)已知當(dāng)時(shí),求數(shù)列的前n項(xiàng)和答案:時(shí)當(dāng)時(shí).【易錯(cuò)點(diǎn)17】不能根據(jù)數(shù)列的通項(xiàng)的特點(diǎn)尋找相應(yīng)的求和方法,在應(yīng)用裂項(xiàng)求和方法時(shí)對(duì)裂項(xiàng)后抵消項(xiàng)的規(guī)律不清,導(dǎo)致多項(xiàng)或少項(xiàng)。例17、求【易錯(cuò)點(diǎn)分析】本題解答時(shí)一方面若不從通項(xiàng)入手分析各項(xiàng)的特點(diǎn)就很難找到解題突破口,其次在裂項(xiàng)抵消中間項(xiàng)的過程中,對(duì)消去哪些項(xiàng)剩余哪些項(xiàng)規(guī)律不清而導(dǎo)致解題失誤。解:由等差數(shù)列的前項(xiàng)和公式得,取,就分別得到,【知識(shí)歸類點(diǎn)拔】“裂項(xiàng)法”有兩個(gè)特點(diǎn),一是每個(gè)分式的
28、分子相同;二是每項(xiàng)的分母都是兩個(gè)數(shù)(也可三個(gè)或更多)相乘,且這兩個(gè)數(shù)的第一個(gè)數(shù)是前一項(xiàng)的第二個(gè)數(shù),如果不具備這些特點(diǎn),就要進(jìn)行轉(zhuǎn)化。同是要明確消項(xiàng)的規(guī)律一般情況下剩余項(xiàng)是前后對(duì)稱的。常見的變形題除本題外,還有其它形式,例如:求,方法還是抓通項(xiàng),即,問題會(huì)很容易解決。另外還有一些類似“裂項(xiàng)法”的題目,如:,求其前項(xiàng)和,可通過分母有理化的方法解決。數(shù)列求和的常用方法:公式法、裂項(xiàng)相消法、錯(cuò)位相減法、倒序相加法等?!揪?7】(2005濟(jì)南統(tǒng)考)求和答案:【易錯(cuò)點(diǎn)18】易由特殊性代替一般性誤將必要條件當(dāng)做充分條件或充要條件使用,缺乏嚴(yán)謹(jǐn)?shù)倪壿嬎季S。例18、(2004年高考數(shù)學(xué)江蘇卷,20)設(shè)無窮等差數(shù)
29、列an的前n項(xiàng)和為Sn.()若首項(xiàng),公差,求滿足的正整數(shù)k;()求所有的無窮等差數(shù)列an,使得對(duì)于一切正整數(shù)k都有成立.【易錯(cuò)點(diǎn)分析】本小題主要考查數(shù)列的基本知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)分析和解決問題的能力.學(xué)生在解第()時(shí)極易根據(jù)條件“對(duì)于一切正整數(shù)k都有成立”這句話將k取兩個(gè)特殊值確定出等差數(shù)列的首項(xiàng)和公差,但沒有認(rèn)識(shí)到求解出的等差數(shù)列僅是對(duì)已知條件成立的必要條件,但不是條件成立的充分條件。還應(yīng)進(jìn)一步的由特殊到一般。解:(I)當(dāng)時(shí)由,即 又.(II)設(shè)數(shù)列an的公差為d,則在中分別取k=1,2,得(1)(2)由(1)得 當(dāng)若成立,若故所得數(shù)列不符合題意.當(dāng)若若.綜上,共有3個(gè)滿足條件的無窮等差數(shù)
30、列:an :an=0,即0,0,0,;an : an=1,即1,1,1,;an :an=2n1,即1,3,5,【知識(shí)點(diǎn)歸類點(diǎn)拔】事實(shí)上,“條件中使得對(duì)于一切正整數(shù)k都有成立.”就等價(jià)于關(guān)于k的方程的解是一切正整數(shù)又轉(zhuǎn)化為關(guān)于k的方程的各項(xiàng)系數(shù)同時(shí)為零,于是本題也可采用這程等價(jià)轉(zhuǎn)化的思想解答,這樣做就能避免因忽視充分性的檢驗(yàn)而犯下的邏輯錯(cuò)誤。在上述解法中一定要注意這種特殊與一般的關(guān)系?!揪?8】(1)(2000全國(guó))已知數(shù)列,其中,且數(shù)列為等比數(shù)列.求常數(shù)p答案:p=2或p=3(提示可令n=1,2,3根據(jù)等比中項(xiàng)的性質(zhì)建立關(guān)于p的方程,再說明p值對(duì)任意自然數(shù)n都成立)【易錯(cuò)點(diǎn)19】用判別式判定方
31、程解的個(gè)數(shù)(或交點(diǎn)的個(gè)數(shù))時(shí),易忽略討論二次項(xiàng)的系數(shù)是否為尤其是直線與圓錐曲線相交時(shí)更易忽略.例19、已知雙曲線,直線,討論直線與雙曲線公共點(diǎn)的個(gè)數(shù)【易錯(cuò)點(diǎn)分析】討論直線與曲線的位置關(guān)系,一般將直線與曲線的方程聯(lián)立,組成方程組,方程組有幾解,則直線與曲線就有幾個(gè)交點(diǎn),但在消元后轉(zhuǎn)化為關(guān)于x或y的方程后,易忽視對(duì)方程的種類進(jìn)行討論而主觀的誤認(rèn)為方程就是二次方程只利用判別式解答。解析:聯(lián)立方程組消去y得到(1)當(dāng)時(shí),即,方程為關(guān)于x的一次方程,此時(shí)方程組只有解,即直線與雙曲線只有一個(gè)交點(diǎn)。(2)當(dāng)時(shí)即,方程組只有一解,故直線與雙曲線有一個(gè)交點(diǎn)(3)當(dāng)時(shí),方程組有兩個(gè)交點(diǎn)此時(shí)且。(4)當(dāng)時(shí)即或時(shí)方程
32、組無解此時(shí)直線與雙曲線無交點(diǎn)。綜上知當(dāng)或時(shí)直線與雙曲線只有一個(gè)交點(diǎn),當(dāng)且。時(shí)直線與雙曲線有兩個(gè)交點(diǎn),當(dāng)或時(shí)方程組無解此時(shí)直線與雙曲線無交點(diǎn)。【知識(shí)點(diǎn)歸類點(diǎn)拔】判斷直線與雙曲線的位置關(guān)系有兩種方法:一種代數(shù)方法即判斷方程組解的個(gè)數(shù)對(duì)應(yīng)于直線與雙曲線的交點(diǎn)個(gè)數(shù)另一種方法借助于漸進(jìn)線的性質(zhì)利用數(shù)形結(jié)合的方法解答,并且這兩種方法的對(duì)應(yīng)關(guān)系如下上題中的第一種情況對(duì)應(yīng)于直線與雙曲線的漸進(jìn)線平行,此時(shí)叫做直線與雙曲線相交但只有一個(gè)公共點(diǎn),通過這一點(diǎn)也說明直線與雙曲線只有一個(gè)公共點(diǎn)是直線與雙曲線相切的必要但不充分條件。第二種情況對(duì)應(yīng)于直線與雙曲線相切。通過本題可以加深體會(huì)這種數(shù)與形的統(tǒng)一?!揪?9】(1)(2
33、005重慶卷)已知橢圓的方程為,雙曲線的左右焦點(diǎn)分別為的左右頂點(diǎn),而的左右頂點(diǎn)分別是的左右焦點(diǎn)。(1)求雙曲線的方程(2)若直線與橢圓及雙曲線恒有兩個(gè)不同的交點(diǎn),且與的兩個(gè)交點(diǎn)A和B滿足,其中O為原點(diǎn),求k的取值范圍。答案:(1)(2)(2)已知雙曲線C: ,過點(diǎn)P(1,1)作直線l, 使l與C有且只有一個(gè)公共點(diǎn),則滿足上述條件的直線l共有_條。答案:4條(可知kl存在時(shí),令l: y-1=k(x-1)代入中整理有(4-k2)x2+2k(k-1)x-(1-k2)-4=0,當(dāng)4-k2=0即k=±2時(shí),有一個(gè)公共點(diǎn);當(dāng)k±2時(shí),由=0有,有一個(gè)切點(diǎn)另:當(dāng)kl不存在時(shí),x=1也和曲
34、線C有一個(gè)切點(diǎn)綜上,共有4條滿足條件的直線)【易錯(cuò)點(diǎn)20】易遺忘關(guān)于和齊次式的處理方法。例20、已知,求(1);(2)的值.【思維分析】將式子轉(zhuǎn)化為正切如利用可將(2)式分子分母除去即可。解:(1); (2) .【知識(shí)點(diǎn)歸類點(diǎn)拔】利用齊次式的結(jié)構(gòu)特點(diǎn)(如果不具備,通過構(gòu)造的辦法得到),進(jìn)行弦、切互化,就會(huì)使解題過程簡(jiǎn)化。這些統(tǒng)稱為1的代換) 常數(shù) “1”的種種代換有著廣泛的應(yīng)用【練20】(2004年湖北卷理科)已知的值.答案:(原式可化為,)【易錯(cuò)點(diǎn)21】解答數(shù)列應(yīng)用題,審題不嚴(yán)易將有關(guān)數(shù)列的第n項(xiàng)與數(shù)列的前n項(xiàng)和混淆導(dǎo)致錯(cuò)誤解答。例21、如果能將一張厚度為0.05mm的報(bào)紙對(duì)拆,再對(duì)拆.對(duì)拆
35、50次后,報(bào)紙的厚度是多少?你相信這時(shí)報(bào)紙的厚度可以在地球和月球之間建一座橋嗎?(已知地球與月球的距離約為米)【易錯(cuò)點(diǎn)分析】對(duì)拆50次后,報(bào)紙的厚度應(yīng)理解一等比數(shù)列的第n項(xiàng),易誤理解為是比等比數(shù)列的前n項(xiàng)和。解析:對(duì)拆一次厚度增加為原來的一倍,設(shè)每次對(duì)拆厚度構(gòu)成數(shù)列,則數(shù)列是以米為首項(xiàng),公比為2的等比數(shù)列。從而對(duì)拆50次后紙的厚度是此等比數(shù)列的第51項(xiàng),利用等比數(shù)列的通項(xiàng)公式易得a51=0.05×10-3×250=5.63×1010,而地球和月球間的距離為4×108<5.63×1010故可建一座橋?!局R(shí)點(diǎn)歸類點(diǎn)拔】以數(shù)列為數(shù)學(xué)模型的應(yīng)用
36、題曾是高考考查的熱點(diǎn)內(nèi)容之一,其中有很多問題都是涉及到等差或者等比數(shù)列的前n項(xiàng)和或第n項(xiàng)的問題,在審題過程中一定要將兩者區(qū)分開來?!揪?1】(2001全國(guó)高考)從社會(huì)效益和經(jīng)濟(jì)效益出發(fā),某地投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè),根據(jù)規(guī)劃,本年度投入800萬元,以后每年投入將比上年減少,本年度當(dāng)?shù)芈糜螛I(yè)收入估計(jì)為400萬元,由于該項(xiàng)建設(shè)對(duì)旅游業(yè)的促進(jìn)作用,預(yù)計(jì)今后的旅游業(yè)收入每年會(huì)比上年增加.(1)設(shè)n年內(nèi)(本年度為第一年)總投入為an萬元,旅游業(yè)總收入為bn萬元,寫出an,bn的表達(dá)式;(2)至少經(jīng)過幾年,旅游業(yè)的總收入才能超過總投入(1)an=800+800×(1)+800
37、×(1)n1=800×(1)k1=4000×1()nbn=400+400×(1+)+400×(1+)k1=400×()k1=1600×()n1(2)至少經(jīng)過5年,旅游業(yè)的總收入才能超過總投入【易錯(cuò)點(diǎn)22】單位圓中的三角函數(shù)線在解題中一方面學(xué)生易對(duì)此知識(shí)遺忘,應(yīng)用意識(shí)不強(qiáng),另一方面易將角的三角函數(shù)值所對(duì)應(yīng)的三角函數(shù)線與線段的長(zhǎng)度二者等同起來,產(chǎn)生概念性的錯(cuò)誤。例21、下列命題正確的是()A、都是第二象限角,若,則B、都是第三象限角,若,則C、都是第四象限角,若,則D、都是第一象限角,若,則?!疽族e(cuò)點(diǎn)分析】學(xué)生在解答此題時(shí)易出現(xiàn)
38、如下錯(cuò)誤:(1)將象限角簡(jiǎn)單理解為銳角或鈍角或270到360度之間的角。(2)思維轉(zhuǎn)向利用三角函數(shù)的單調(diào)性,沒有應(yīng)用三角函數(shù)線比較兩角三角函數(shù)值大小的意識(shí)而使思維受阻。解析:A、由三角函數(shù)易知此時(shí)角的正切線的數(shù)量比角的正切線的數(shù)量要小即B、同理可知C、知滿足條件的角的正切線的數(shù)量比角的正切線的數(shù)量要大即。正確。D、同理可知應(yīng)為?!局R(shí)點(diǎn)歸類點(diǎn)拔】單位圓的三角函數(shù)線將抽象的角的三角函數(shù)值同直觀的有向線段的數(shù)量對(duì)應(yīng)起來,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,要注意一點(diǎn)的就是角的三角函數(shù)值是有向線段的數(shù)量而不是長(zhǎng)度。三角函數(shù)線在解三角不等式、比較角的同名函數(shù)值的大小、三角關(guān)系式的證明都有著廣泛的應(yīng)用并且在這些方
39、面有著一定的優(yōu)越性。例如利用三角函數(shù)線易知,等?!揪?2】(2000全國(guó)高考)已知,那么下列命題正確的是()A、 若、都是第一象限角,則B、若、都是第二象限角,則B、 若、都是第三象限角,則D、若、都是第四象限角,則答案:D【易錯(cuò)點(diǎn)23】在利用三角函數(shù)的圖象變換中的周期變換和相位變換解題時(shí)。易將和求錯(cuò)。例23要得到函數(shù)的圖象,只需將函數(shù)的圖象()A、 先將每個(gè)x值擴(kuò)大到原來的4倍,y值不變,再向右平移個(gè)單位。B、 先將每個(gè)x值縮小到原來的倍,y值不變,再向左平移個(gè)單位。C、 先把每個(gè)x值擴(kuò)大到原來的4倍,y值不變,再向左平移個(gè)單位。D、 先把每個(gè)x值縮小到原來的倍,y值不變,再向右平移個(gè)單位。
40、【易錯(cuò)點(diǎn)分析】變換成是把每個(gè)x值縮小到原來的倍,有的同學(xué)誤認(rèn)為是擴(kuò)大到原來的倍,這樣就誤選A或C,再把平移到有的同學(xué)平移方向錯(cuò)了,有的同學(xué)平移的單位誤認(rèn)為是。解析:由變形為常見有兩種變換方式,一種先進(jìn)行周期變換,即將的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋兜玫胶瘮?shù)的圖象,再將函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)向右平移單位。即得函數(shù)?;蛘呦冗M(jìn)行相位變換,即將的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位,得到函數(shù)的圖象,再將其橫坐標(biāo)變?yōu)樵瓉淼?倍即得即得函數(shù)的圖象?!局R(shí)點(diǎn)歸類點(diǎn)拔】利用圖角變換作圖是作出函數(shù)圖象的一種重要的方法,一般地由得到的圖象有如下兩種思路:一先進(jìn)行振幅變換即由橫坐標(biāo)不變,縱
41、坐標(biāo)變?yōu)樵瓉淼腁倍得到,再進(jìn)行周期變換即由 縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋?,得到,再進(jìn)行相位變換即由橫坐標(biāo)向左(右)平移個(gè)單位,即得,另種就是先進(jìn)行了振幅變換后,再進(jìn)行相位變換即由向左(右)平移個(gè)單位,即得到函數(shù)的圖象,再將其橫坐標(biāo)變?yōu)樵瓉淼谋都吹?。不論哪一種變換都要注意一點(diǎn)就是不論哪一種變換都是對(duì)純粹的變量x來說的?!揪?3】(2005全國(guó)卷天津卷)要得到的圖象,只需將函數(shù)的圖象上所有的點(diǎn)的A、 橫坐標(biāo)縮短為原來的倍(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度。B、橫坐標(biāo)縮短為原來的倍(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度。C、橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度。D、橫坐標(biāo)伸長(zhǎng)
42、為原來的2倍(縱坐標(biāo)不變),再向右平移個(gè)單位長(zhǎng)度。答案:C【易錯(cuò)點(diǎn)24】沒有挖掘題目中的確隱含條件,忽視對(duì)角的范圍的限制而造成增解現(xiàn)象。例24、已知,求的值。【易錯(cuò)點(diǎn)分析】本題可依據(jù)條件,利用可解得的值,再通過解方程組的方法即可解得、的值。但在解題過程中易忽視這個(gè)隱含條件來確定角范圍,主觀認(rèn)為的值可正可負(fù)從而造成增解。解析:據(jù)已知(1)有,又由于,故有,從而即(2)聯(lián)立(1)(2)可得,可得?!局R(shí)點(diǎn)歸類點(diǎn)拔】在三角函數(shù)的化簡(jiǎn)求值過程中,角的范圍的確定一直是其重點(diǎn)和難點(diǎn),在解題過程中要注意在已有條件的基礎(chǔ)上挖掘隱含條件如:結(jié)合角的三角函數(shù)值的符號(hào)、三角形中各內(nèi)角均在區(qū)間內(nèi)、與已知角的三角函數(shù)值
43、的大小比較結(jié)合三角函數(shù)的單調(diào)性等。本題中實(shí)際上由單位圓中的三角函數(shù)線可知若則必有,故必有?!揪?4】(1994全國(guó)高考)已知,則的值是。答案:【易錯(cuò)點(diǎn)25】根據(jù)已知條件確定角的大小,沒有通過確定角的三角函數(shù)值再求角的意識(shí)或確定角的三角函數(shù)名稱不適當(dāng)造成錯(cuò)解。例25、若,且、均為銳角,求的值?!疽族e(cuò)點(diǎn)分析】本題在解答過程中,若求的正弦,這時(shí)由于正弦函數(shù)在區(qū)間內(nèi)不單調(diào)故滿足條件的角有兩個(gè),兩個(gè)是否都滿足還需進(jìn)一步檢驗(yàn)這就給解答帶來了困難,但若求的余弦就不易出錯(cuò),這是因?yàn)橛嘞液瘮?shù)在內(nèi)單調(diào),滿足條件的角唯一。解析:由且、均為銳角知解析:由且、均為銳角知,則由、均為銳角即故【知識(shí)點(diǎn)歸類點(diǎn)拔】根據(jù)已知條件
44、確定角的大小,一定要轉(zhuǎn)化為確定該角的某個(gè)三角函數(shù)值,再根據(jù)此三角函數(shù)值確定角這是求角的必然步驟,在這里要注意兩點(diǎn)一就是要結(jié)合角的范圍選擇合適的三角函數(shù)名稱同時(shí)要注意盡量用已知角表示待求角,這就需要一定的角的變換技巧如:等。二是依據(jù)三角函數(shù)值求角時(shí)要注意確定角的范圍的技巧?!揪?5】(1)在三角形中,已知,求三角形的內(nèi)角C的大小。答案:(提示確定已知角的余弦值,并結(jié)合已知條件確定角A的范圍)(2)(2002天津理,17)已知cos(),求cos(2)的值.答案:=【易錯(cuò)點(diǎn)26】對(duì)正弦型函數(shù)及余弦型函數(shù)的性質(zhì):如圖象、對(duì)稱軸、對(duì)稱中心易遺忘或沒有深刻理解其意義。例26、如果函數(shù)的圖象關(guān)于直線對(duì)稱,
45、那么a等于( )A. B.C.1 D.1【易錯(cuò)點(diǎn)分析】函數(shù)的對(duì)稱軸一定經(jīng)過圖象的波峰頂或波谷底,且與y軸平行,而對(duì)稱中心是圖象與x軸的交點(diǎn),學(xué)生對(duì)函數(shù)的對(duì)稱性不理解誤認(rèn)為當(dāng)時(shí),y=0,導(dǎo)致解答出錯(cuò)。解析:(法一)函數(shù)的解析式可化為,故的最大值為,依題意,直線是函數(shù)的對(duì)稱軸,則它通過函數(shù)的最大值或最小值點(diǎn)即,解得.故選D(法二)依題意函數(shù)為,直線是函數(shù)的對(duì)稱軸,故有,即:,而故,從而故選D.(法三)若函數(shù)關(guān)于直線是函數(shù)的對(duì)稱則必有,代入即得?!局R(shí)點(diǎn)歸類點(diǎn)拔】對(duì)于正弦型函數(shù)及余弦型函數(shù)它們有無窮多條對(duì)稱軸及無數(shù)多個(gè)對(duì)稱中心,它們的意義是分別使得函數(shù)取得最值的x值和使得函數(shù)值為零的x值,這是它們的
46、幾何和代數(shù)特征。希望同學(xué)們認(rèn)真學(xué)習(xí)本題的三種解法根據(jù)具體問題的不同靈活處理?!揪?6】(1)(2003年高考江蘇卷18)已知函數(shù)上R上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),求和的值.答案:或。(2)(2005全國(guó)卷一第17題第一問)設(shè)函數(shù)的,圖象的一條對(duì)稱軸是直線,求 答案:=【易錯(cuò)點(diǎn)27】利用正弦定理解三角形時(shí),若已知三角形的兩邊及其一邊的對(duì)角解三角形時(shí),易忽視三角形解的個(gè)數(shù)。例27、在中,。求的面積【易錯(cuò)點(diǎn)分析】根據(jù)三角形面積公式,只需利用正弦定理確定三角形的內(nèi)角C,則相應(yīng)的三角形內(nèi)角A即可確定再利用即可求得。但由于正弦函數(shù)在區(qū)間內(nèi)不嚴(yán)格格單調(diào)所以滿足條件的角可能不唯一,這時(shí)要
47、借助已知條件加以檢驗(yàn),務(wù)必做到不漏解、不多解。解析:根據(jù)正弦定理知:即得,由于即滿足條件的三角形有兩個(gè)故或.則或故相應(yīng)的三角形面積為或.【知識(shí)點(diǎn)歸類點(diǎn)拔】正弦定理和余弦定理是解三角形的兩個(gè)重要工具,它溝通了三角形中的邊角之間的內(nèi)在聯(lián)系,正弦定理能夠解決兩類問題(1)已知兩角及其一邊,求其它的邊和角。這時(shí)有且只有一解。(2)已知兩邊和其中一邊的對(duì)角,求其它的邊和角,這是由于正弦函數(shù)在在區(qū)間內(nèi)不嚴(yán)格格單調(diào),此時(shí)三角形解的情況可能是無解、一解、兩解,可通過幾何法來作出判斷三角形解的個(gè)數(shù)。如:在中,已知a,b和A解的情況如下:(1) 當(dāng)A為銳角(2)若A為直角或鈍角【練27】(2001全國(guó))如果滿足,
48、的三角表恰有一個(gè)那么k的取值范圍是()A、B、C、D、或答案:D【易錯(cuò)點(diǎn)28】三角形中的三角函數(shù)問題。對(duì)三角變換同三角形邊、角之間知識(shí)的結(jié)合的綜合應(yīng)用程度不夠。例28、(1)(2005湖南高考)已知在ABC中,sinA(sinBcosB)sinC0,sinBcos2C0,求角A、B、C的大小.【易錯(cuò)點(diǎn)分析】本題在解答過程中若忽視三角形中三內(nèi)角的聯(lián)系及三角形各內(nèi)角大小范圍的限制,易使思維受阻或解答出現(xiàn)增解現(xiàn)象。解法一由得所以即因?yàn)樗?,從而由知從?由即由此得所以解法二:由由、,所以即由得所以即因?yàn)椋杂蓮亩?,知B+2C=不合要求.再由,得所以2、(北京市東城區(qū)2005年高三年級(jí)四月份綜合練習(xí)
49、)在ABC中,a、b、c分別是角A、B、C的對(duì)邊,且 ()求角B的大小()若,求ABC的面積.【思維分析】根據(jù)正弦定理和余弦定理將條件化為三角形邊的關(guān)系或角的關(guān)系解答。()解法一:由正弦定理得將上式代入已知即故A+B+C=,為三角形的內(nèi)角,.解法二:由余弦定理得將上式代入整理得為三角形的內(nèi)角,.()將代入余弦定理得【知識(shí)點(diǎn)歸類點(diǎn)拔】三角形中的三角函數(shù)問題一直是高考的熱點(diǎn)內(nèi)容之一。對(duì)正余弦定理的考查主要涉及三角形的邊角互化(如判斷三角形的形狀等,利用正、余弦定理將條件中含有的邊和角的關(guān)系轉(zhuǎn)化為邊或角的關(guān)系是解三角形的常規(guī)思路),三角形內(nèi)的三角函數(shù)求值、三角恒等式的證明、三角形外接圓的半徑等都體現(xiàn)
50、了三角函數(shù)知識(shí)與三角形知識(shí)的交匯,體現(xiàn)了高考命題的原則?!揪?8】(1)(2004年北京春季高考)在中,a,b,c分別是的對(duì)邊長(zhǎng),已知a,b,c成等比數(shù)列,且,求的大小及的值。答案:,(2)(2005天津)在ABC中,A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,設(shè)a、b、c滿足條件和。求A和的值。答案:,【易錯(cuò)點(diǎn)29】含參分式不等式的解法。易對(duì)分類討論的標(biāo)準(zhǔn)把握不準(zhǔn),分類討論達(dá)不到不重不漏的目的。例29、解關(guān)于x的不等式1(a1).【易錯(cuò)點(diǎn)分析】將不等式化為關(guān)于x的一元二次不等式后,忽視對(duì)二次項(xiàng)系數(shù)的正負(fù)的討論,導(dǎo)致錯(cuò)解。解:原不等式可化為:0,即(a1)x+(2a)(x2)0.當(dāng)a1時(shí),原不等式與
51、(x)(x2)0同解.若2,即0a1時(shí),原不等式無解;若2,即a0或a1,于是a1時(shí)原不等式的解為(,)(2,+).當(dāng)a1時(shí),若a0,解集為(,2);若0a1,解集為(2,)綜上所述:當(dāng)a1時(shí)解集為(,)(2,+);當(dāng)0a1時(shí),解集為(2,);當(dāng)a=0時(shí),解集為;當(dāng)a0時(shí),解集為(,2).【知識(shí)點(diǎn)分類點(diǎn)拔】解不等式對(duì)學(xué)生的運(yùn)算化簡(jiǎn)等價(jià)轉(zhuǎn)化能力有較高的要求,隨著高考命題原則向能力立意的進(jìn)一步轉(zhuǎn)化,對(duì)解不等式的考查將會(huì)更是熱點(diǎn),解不等式需要注意下面幾個(gè)問題:(1)熟練掌握一元一次不等式(組)、一元二次不等式(組)的解法.(2)掌握用序軸標(biāo)根法解高次不等式和分式不等式,特別要注意因式的處理方法.(3
52、)掌握無理不等式的三種類型的等價(jià)形式,指數(shù)和對(duì)數(shù)不等式的幾種基本類型的解法.(4)掌握含絕對(duì)值不等式的幾種基本類型的解法.(5)在解不等式的過程中,要充分運(yùn)用自己的分析能力,把原不等式等價(jià)地轉(zhuǎn)化為易解的不等式.(6)對(duì)于含字母的不等式,要能按照正確的分類標(biāo)準(zhǔn),進(jìn)行分類討論.【練29】(2005年江西高考)已知函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為(1)求函數(shù)的解析式;(2)設(shè),解關(guān)于的不等式:答案:當(dāng)時(shí),解集為當(dāng)時(shí),不等式為解集為當(dāng)時(shí),解集為【易錯(cuò)點(diǎn)30】求函數(shù)的定義域與求函數(shù)值域錯(cuò)位例30、已知函數(shù)(1)如果函數(shù)的定義域?yàn)镽求實(shí)數(shù)m的取值范圍。(2)如果函數(shù)的值域?yàn)镽求實(shí)數(shù)m的取值范圍?!疽族e(cuò)點(diǎn)分
53、析】此題學(xué)生易忽視對(duì)是否為零的討論,而導(dǎo)致思維不全面而漏解。另一方面對(duì)兩個(gè)問題中定義域?yàn)镽和值域?yàn)镽的含義理解不透徹導(dǎo)致錯(cuò)解。解析:(1)據(jù)題意知若函數(shù)的定義域?yàn)镽即對(duì)任意的x值恒成立,令,當(dāng)=0時(shí),即或。經(jīng)驗(yàn)證當(dāng)時(shí)適合,當(dāng)時(shí),據(jù)二次函數(shù)知識(shí)若對(duì)任意x值函數(shù)值大于零恒成立,只需解之得或綜上所知m的取值范圍為或。(2)如果函數(shù)的值域?yàn)镽即對(duì)數(shù)的真數(shù)能取到任意的正數(shù),令當(dāng)=0時(shí),即或。經(jīng)驗(yàn)證當(dāng)時(shí)適合,當(dāng)時(shí),據(jù)二次函數(shù)知識(shí)知要使的函數(shù)值取得所有正值只需解之得綜上可知滿足題意的m的取值范圍是?!局R(shí)點(diǎn)歸類點(diǎn)拔】對(duì)于二次型函數(shù)或二次型不等式若二次項(xiàng)系數(shù)含有字母,要注意對(duì)字母是否為零進(jìn)行討論即函數(shù)是一次函
54、數(shù)還是二次函數(shù)不等式是一次不等式還是二次不等式。同時(shí)通過本題的解析同學(xué)們要認(rèn)真體會(huì)這種函數(shù)與不等式二者在解題中的結(jié)合要通過二者的相互轉(zhuǎn)化而獲得解題的突破破口。再者本題中函數(shù)的定義域和值域?yàn)镽是兩個(gè)不同的概念,前者是對(duì)任意的自變量x的值函數(shù)值恒正,后者是函數(shù)值必須取遍所有的正值二者有本質(zhì)上的區(qū)別。【練30】已知函數(shù)的定義域和值域分別為R試分別確定滿足條件的a的取值范圍。答案:(1)或(2)或【易錯(cuò)點(diǎn)31】不等式的證明方法。學(xué)生不能據(jù)已知條件選擇相應(yīng)的證明方法,達(dá)不到對(duì)各種證明方法的靈活應(yīng)用程度。例31、已知a0,b0,且a+b=1.求證:(a+)(b+).【易錯(cuò)點(diǎn)分析】此題若直接應(yīng)用重要不等式證
55、明,顯然a+和 b+不能同時(shí)取得等號(hào),本題可有如下證明方法。證法一:(分析綜合法)欲證原式,即證4(ab)2+4(a2+b2)25ab+40,即證4(ab)233(ab)+80,即證ab或ab8.a0,b0,a+b=1,ab8不可能成立1=a+b2,ab,從而得證.證法二:(均值代換法)設(shè)a=+t1,b=+t2.a+b=1,a0,b0,t1+t2=0,|t1|,|t2|顯然當(dāng)且僅當(dāng)t=0,即a=b=時(shí),等號(hào)成立.證法三:(比較法)a+b=1,a0,b0,a+b2,ab證法四:(綜合法)a+b=1, a0,b0,a+b2,ab.證法五:(三角代換法)a0,b0,a+b=1,故令a=sin2,b=
56、cos2,(0,)【知識(shí)點(diǎn)歸類點(diǎn)拔】1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.(1)比較法證不等式有作差(商)、變形、判斷三個(gè)步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述;如果作差以后的式子可以整理為關(guān)于某一個(gè)變量的二次式,則考慮用判別式法證.(2)綜合法是由因?qū)Ч?,而分析法是?zhí)果索因,兩法相互轉(zhuǎn)換,互相滲透,互為前提,充分運(yùn)用這一辯證關(guān)系,可以增加解題思路,開擴(kuò)視野.2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數(shù)單調(diào)性法、判別式法、數(shù)形結(jié)合法等.換元法主要有三角代換,均值代換兩種,在應(yīng)用換元法時(shí),要注意代換的等價(jià)性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標(biāo)可以從要證的結(jié)論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,適宜用反證法.證明不等式時(shí),要依據(jù)題設(shè)、題目的特點(diǎn)和內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟、技巧和語言特點(diǎn).【練31】(2002北京文)數(shù)列由下列條件確定:(1) 證明:對(duì)于總有,(2)證明:對(duì)于,總有.【易錯(cuò)點(diǎn)32】函數(shù)與方程及不等式的聯(lián)系與轉(zhuǎn)化。學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024醫(yī)療機(jī)構(gòu)醫(yī)療服務(wù)與技術(shù)合作協(xié)議
- 2024年度品牌合作發(fā)展協(xié)議
- 2024年度版權(quán)許可使用合同許可期限與使用方式
- 2024復(fù)印機(jī)共享租用合同說明
- 2024年國(guó)際品牌服裝連鎖加盟合同
- 2024委托采購(gòu)合同樣本
- 04園林綠化工程設(shè)計(jì)與施工合同
- 2024年度旅游服務(wù)合同詳細(xì)描述及合同標(biāo)的
- 2024年度文化創(chuàng)意產(chǎn)業(yè)項(xiàng)目投資合同
- 2024個(gè)人租房合同范例
- (試卷)建甌市2024-2025學(xué)年第一學(xué)期七年級(jí)期中質(zhì)量監(jiān)測(cè)
- 《安徽省二年級(jí)上學(xué)期數(shù)學(xué)期末試卷全套》
- 2024年企業(yè)業(yè)績(jī)對(duì)賭協(xié)議模板指南
- “全民消防生命至上”主題班會(huì)教案(3篇)
- 24秋國(guó)家開放大學(xué)《當(dāng)代中國(guó)政治制度》形考任務(wù)1-4參考答案
- “以德育心,以心育德”
- 臨床用藥管理制度
- 多層工業(yè)廠房施工組織設(shè)計(jì)#現(xiàn)澆框架結(jié)構(gòu)
- 消防控制室值班記錄(制式表格).doc
- 艱辛與快樂并存-壓力與收獲同在——我的課題研究故事
- 混凝土攔擋壩的施工方案
評(píng)論
0/150
提交評(píng)論