版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、姓名:劉剛學(xué)號(hào):15平面應(yīng)力應(yīng)變分析有限元法Abstruct:本文通過(guò)對(duì)平面應(yīng)力/應(yīng)變問(wèn)題的簡(jiǎn)要理論闡述,使讀者對(duì)要分析的問(wèn) 題有大致的印象,然后結(jié)合兩個(gè)實(shí)例,通過(guò) MATLAB軟件的計(jì)算,將有限元分 析平面應(yīng)力/應(yīng)變問(wèn)題的過(guò)程形象的展示給讀者,讓人一目了然,快速了解有限 元解決這類(lèi)問(wèn)題的方法和步驟!一 基本理論有限元法的基本思路和基本原則以結(jié)構(gòu)力學(xué)中的位移法為基礎(chǔ),把復(fù)雜的結(jié)構(gòu)或連續(xù) 體看成有限個(gè)單元的組合,各單元彼此在節(jié)點(diǎn)出連接而組成整體。把連續(xù)體分成有限 個(gè)單元和節(jié)點(diǎn),稱(chēng)為離散化。先對(duì)單元進(jìn)行特性分析,然后根據(jù)節(jié)點(diǎn)處的平衡和協(xié)調(diào) 條件建立方程,綜合后做整體分析。這樣一分一合,先離散再綜合
2、的過(guò)程,就是把復(fù) 雜結(jié)構(gòu)或連續(xù)體的計(jì)算問(wèn)題轉(zhuǎn)化簡(jiǎn)單單元分析與綜合問(wèn)題。因此,一般的有限揭發(fā)包 括三個(gè)主要步驟:離散化 單元分析整體分析。二.用到的函數(shù)1. Li nearTria ngleEleme ntStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p)2. Li nearBarAssemble(K k I f)3. L in earBarEleme ntForces(k u)4. L i nearBarEleme ntStresses(k u A)5. L in earTria ngleEleme ntArea(E NU t)三實(shí)例例1考慮如圖所示的受均布載荷作用的薄
3、平板結(jié)構(gòu)。將平板離散化成兩個(gè)線(xiàn) 性三角元,假定 E=200GPa, v=0.3,t=0.025m,w=3000kN/m.1. 離散化2. 寫(xiě)出單元?jiǎng)偠染仃嚭瘮?shù),得到兩個(gè)單元?jiǎng)偠染仃囃ㄟ^(guò) matlab 的 Li nearTria ngleEleme ntStiffnessk1和k2,每個(gè)矩陣都是6 6的。>> E=210e6210000000>>k1=Li nearTria ngleEleme ntStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1)k1 =1.0e+006 *Columns 1 through 52.019200 -1.0096
4、-2.019205.7692-0.865400.86540 -0.86541.44230-1.44231.0096000.50481.0096-2.0192 0.8654 -1.4423 1.0096 3.46151.0096 -5.7692 0.8654 -0.5048 -1.8750Colu mn 61.0096-5.76920.8654-0.5048-1.87506.2740>> NU=0.3NU =0.3000>> t=0.0250.0250>> k2=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0,0
5、.5,0.25,1)k2 =1.0e+006 *Columns 1 through 51.44230-1.44230.8654000.50481.0096-0.5048-1.0096-1.44231.00963.4615-1.8750-2.01920.8654-0.5048-1.87506.27401.00960-1.0096-2.01921.00962.0192-0.865400.8654-5.76920Column 6-0.865400.8654-5.769205.76923. 集成整體剛度矩陣8*8 零矩陣K =00000000000000000000000000000000000000
6、00000000000000000000000000>> K=LinearTriangleAssemble(K,k1,1,3,4)K =1.0e+006 *Columns 1 through 52.0192000005.769200-0.865400000000000-0.8654001.4423-1.00960000-2.01920.865400-1.44231.0096-5.7692000.86541.0e+007 *0.40380.10100-0.576900-0.10100-0.20190.08650-0.0505-0.2019-0.18750.10100.62740 01
7、.1538 -0.0865-0.0865 0.14420 00 -0.1442-0.57690.0865-0.57690.086500-0.1010 -0.2019000.05050.1010-0.0505000-0.14420.10100.4904-0.1875-0.14420.08650-0.2019-0.57690.08650.08650-0.05050-0.1875-0.14420.67790.10100.10100.3462-0.0505-0.1875Columns 6 through 8-1.0096-2.01921.009600.8654-5.76920000000-1.4423
8、0.86540.50481.0096-0.50481.00963.4615-1.8750-0.5048-1.87506.2740>> K=LinearTriangleAssemble(K,k1,1,2,3)4.引入邊界條件 .用上步得到的整體剛度矩陣,可以得到該結(jié)構(gòu)的方程組如下形式3.46150 -1.4423 0.86540 -1.8750 -2.0192 1.0096 'U 1X% 10 6.2740 1.0096 - 0.5048 -1.87500 0.8654 -5.7692SyF1y-1.4423 1.0096 3.4615 -1.8750 -2.01920.86
9、5400U 2XF2X0.8654 -0.5048 -1.87506.2740 1.0096 -5.769200U2yF2y0 -1.8750 -2.01921.0096 3.46150 -1.4423 0.8654U 3XF3X-1.875000.8654 -5.76920 6.2740 1.0096 -0.5048U3yF3y-2.01920.865400 -1.4423 1.00963.4615 -1.8750U 4XF4X1.0096 -5.769200 0.8654 - 0.5048 -1.8750 6.2740 一U4y -IF4y本題的邊界條件:1063yF?x = 9.375,
10、 F?y = 0, F3X = 9.375, F將邊界條件帶入,得到:3.46150 -1.4423 0.86540 -1.8750-2.01920 6.2740 1.0096 - 0.5048-1.87500 0.8654-1.4423 1.00963.4615 -1.8750 -2.01920.86546100 -1.8750 -2.01921.00963.4615, 0-1.44230.8654-1.87500 0.8654-5.769206.27401.0096-0.5048-2.01920.865400 -1.44231.00963.4615-1.87501.0096-5.76920
11、0 0.8654 -0.5048-1.87506.27400.8654 -0.5048 -1.87506.2740 1.0096-5.76920001耳0F1yU2X9.375U2y0U3X9.375U3y00F4X0F4y1.0096-5.76920K的第3-6行的第3-6列作為子矩陣3.4615- 1.87506-1.87506.274010-2.01921.0096-0.8654-5.7692Matlab命令-2.01921.00963.46155.解方程分解上述方程組,提取總體剛度矩陣>> k=K(3:6,3:6)0.8654-5.76926.2740U 2XU2yU 3X
12、9. 3759. 375k =1.0e+006 *3.4615-1.8750-2.01920.8654-1.87506.27401.0096-5.7692-2.01921.00963.461500.8654-5.76920 6.2740>> f=9.375;0;9.375;09.3750 09.37500>> u=kfu =1.0e-005 *0.71110.11150.65310.0045現(xiàn)在可以清楚的看出,節(jié)點(diǎn) 2的水平位移和垂直位移分別是0.7111m和0.1115m。節(jié)點(diǎn)3的水平位移和垂直位移分別是0.6531m 和0.0045m。6. 后處理用matlab命令
13、求出節(jié)點(diǎn)1和節(jié)點(diǎn)4的支反力以及每個(gè)單元的應(yīng)力。首先建立總體節(jié)點(diǎn)位移矢量 U,U=0;0;u;0;0U =1.0e-005 *000.71110.11150.65310.004500>> F=K*U-9.3750-5.62959.37500.00009.37500.0000-9.37505.6295由以上知,節(jié)點(diǎn)1的水平反力和垂直反力分別是9.375k n(指向左邊)和5.6295kn (作用力方向向下),節(jié)點(diǎn) 4的水平反力和垂直反力分別是9.375kn (指向左邊)和 5.6295kn(作用力方向向下) . 滿(mǎn)足力平衡條件。接著,建立單元節(jié)點(diǎn)位移矢量比和u2,然后調(diào)用matlab命
14、令LinearTriangleElementStresses計(jì)算單元應(yīng)力 sigma1 和 sigma2>> u1=U(1);U(2);U(5);U(6);U(7);U(8)u1 =1.0e-005 *000.65310.004500>> u2=U(1);U(2);U(3);U(4);U(5);U(6)u2 =1.0e-005 *000.71110.11150.65310.0045>>sigma1=LinearTriangleElementStresses(E,NU,0.025,0,0,0.5,0.25,0,0.25,1,u1)sigma1 =1.0e+00
15、3 *3.01440.90430.0072>>sigma2=Li nearTria ngleEleme ntStresses(E,NU,0.025,0,0,0.5,0,0.5,0.25,1,u2)sigma2 =1.0e+003 *2.9856-0.0036-0.0072由以上可知,單元1的應(yīng)力二x =3.0144MPa(拉應(yīng)力),二y =0.9043MPa (拉應(yīng)力),xy = 0.0072MPa(正值)。單元2的應(yīng)力是二 x =2.9856MPa(拉應(yīng)力):=0.0036MPa(壓應(yīng)力)岑=0.0072MPa(負(fù)值)。顯然,在x方向的應(yīng)力(拉應(yīng)力)接近于正確的值3MPa (拉應(yīng)
16、力)。接著調(diào)用Lin earTria ngleEleme ntStresses函數(shù)計(jì)算每個(gè)單元的主應(yīng)力和主應(yīng)力方向角。>> s1= Li nearTria ngleEleme ntPStresses(sigmal)si =1.0e+003 *3.01440.90430.0002>> s2= Lin earTria ngleEleme ntPStresses(sigma2)s2 =2.98561.0e+3 *-0.0036-0.00016 =3.0144MPa(拉應(yīng)力),二0.9043MPa(拉應(yīng)力)主應(yīng)力方向角 =0.2二1 = 2.9856MPa(拉應(yīng)力),二0.00
17、36MPa(壓應(yīng)力),二p - -0.1例2考慮如圖3.1所示的由均勻分布載荷和集中載荷作用的薄平板結(jié)構(gòu)。將平板離散化成12個(gè)線(xiàn)性三角單元,如圖 4所示。假定E=210GPa,v=03,t=0025m,w=100kN/m 和 P=125kN。1.離散化2. 寫(xiě)出單元?jiǎng)偠染仃?gt;> E=201e6;>> NU=0.3;>> t=0.025;>> k1= Li nearTria ngleEleme ntStiffness(E,NU,t,0,0.5,0.125,0.375,0.25,0.5,1);>> k2= Lin earTria ngle
18、Eleme ntStiffness(E,NU,t,0,0.5,0,0.25,0.125,0.375,1);>> k3= Li nearTria ngleEleme ntStiffness(E,NU,t,0.125,0.375,0.25,0.25,0.25,0.5,1);>> k4= Li nearTria ngleEleme ntStiffness(E,NU,t,0.125,0.375,0,0.25,0.25,0.25,1);>> k5= Li nearTria ngleEleme ntStiffness(E,NU,t,0,0.25,0.125,0.125,
19、0.25,0.25,1);>> k6= Li nearTria ngleEleme ntStiffness(E,NU,t,0,0.25,0,0,0.125,0.125,1);>> k7= Li nearTria ngleEleme ntStiffness(E,NU,t,0.25,0.25,0.125,0.125,0.25,0,1);>> k8= Lin earTria ngleEleme ntStiffness(E,NU,t,0.125,0.125,0,0,0.25,0,1);>> k9= Lin earTria ngleEleme ntStif
20、fness(E,NU,t,025,0.25,0.25,0,0.375,0.125,1);>> k10= Li nearTria ngleEleme ntStiffness(E,NU,t,0.25,0.25,0.375,0.125,0.5,0.25,1);>> k11= Lin earTria ngleEleme ntStiffness(E,NU,t,0.25,0,0.5,0,0.375,0.125,1);>> k12= Li nearTria ngleEleme ntStiffness(E,NU,t,0.375,0.125,0.5,0,0.5,0.25,1)
21、k1 =1.8637-0.8973-0.96630.8283-0.89730.0690-0.89731.86370.9663-2.7610-0.06900.89731.0e+6 *-0.9663 0.9663 1.9327 0 -0.9663 -0.96630.8283 -2.7610 0 5.5220 -0.8283 -2.7610-0.8973 -0.0690 -0.9663 -0.8283 1.8637 0.89730.0690 0.8973 -0.9663 -2.7610 0.8973 1.86373. 集成整體剛度矩陣:>>K=zero(22,22);>>K=
22、LinearTriangleAssemble(K,k1,1,3,2);>>K=LinearTriangleAssemble(K,k2,1,4,3);>>K=LinearTriangleAssemble(K,k3,3,5,2);>>K=LinearTriangleAssemble(K,k4,3,4,5);>>K=LinearTriangleAssemble(K,k5,4,6,5);>>K=LinearTriangleAssemble(K,k6,4,7,6);>>K=LinearTriangleAssemble(K,k7,5,
23、6,8);>>K=LinearTriangleAssemble(K,k8,6,7,8);>>K=LinearTriangleAssemble(K,k9,5,8,9);>>K=LinearTriangleAssemble(K,k10,5,9,10);>>K=LinearTriangleAssemble(K,k11,8,11,9);>>K=LinearTriangleAssemble(K,k12,9,11,10) 運(yùn)行得1.0e+008 *Columns 1 through 70.0389-0.0187-0.00940.0007-0.03
24、890.01870.0094-0.01870.0389-0.00070.00940.0187-0.03890.0007-0.0094-0.00070.03890.0187-0.0389-0.018700.00070.00940.01870.0389-0.0187-0.03890-0.03890.0187-0.0389-0.01870.15580-0.03890.0187-0.0389-0.0187-0.038900.1558-0.01870.00940.000700-0.0389-0.01870.0779-0.0007-0.009400-0.0187-0.03890000.0094-0.000
25、7-0.03890.0187-0.0187000.0007-0.00940.0187-0.03890000000-0.03890000000.01870000000.0094000000-0.000700000000000000000000000000000000000000000000000000000000Columns 8 through 14-0.0007000000-0.009400000000.00940.000700000-0.0007-0.00940000-0.0187-0.03890.01870000-0.03890.0187-0.038900000-0.01870-0.03
26、890.01870.0094-0.00070.077900.01870.0187-0.03890.0007-0.009400.0972-0.0093-0.0389-0.0187000.0187-0.00930.0972-0.0187-0.0389000.0187-0.0389-0.01870.15580-0.0389-0.0187-0.0389-0.0187-0.038900.1558-0.0187-0.03890.000700-0.0389-0.01870.03890.0187-0.009400-0.0187-0.03890.01870.03890-0.00090.0095-0.03890.
27、0187-0.00940.000700.0095-0.03840.0187-0.0389-0.00070.009400.0004-0.000200000-0.00020.000400000-0.0094-0.0007000000.00070.0094000000000000000000Columns 15 through 2100000000000000000000000000000000000000000000000000000000-0.00090.00950.0004-0.0002 -0.00940.000700.0095-0.0384-0.00020.0004 -0.00070.009
28、40-0.03890.0187000000.0187-0.038900000-0.0094-0.0007000000.00070.009400000-1.94080.00951.9994-0.037700-0.00940.0095-5.6533-0.03775.7119000.00071.9994-0.0377-1.92190.0379-0.0389-0.0187-0.0389-0.03775.71190.0379-5.6344-0.0187-0.03890.018700-0.0389-0.01870.03890.01870.009400-0.0187-0.03890.01870.0389-0
29、.0007-0.00940.0007-0.03890.01870.0094-0.00070.0389-0.00070.00940.0187-0.03890.0007-0.0094-0.0187Column 2200000000000000-0.00070.00940.0187-0.03890.0007-0.0094-0.01870.0389 0.0007-0.0094-0.01870.03894. 引入邊界條件:U1x= U 1y= U 4x= U4y=U 7x=U7y=0F2x= F2y= F3x= F3y=F6x=F6y=F8x= F8y= F9x= F 9y =F10x=F 10y= F
30、11x= F11y= 0 F5x= 0,F5y= -12.55. 解方程: >>k=K(3:6,3:6),K(3:6,9:12),K(3:6,15:22);K(9:12,3:6),K(9:12,9:12),K(9:12,15:22);K(15:22,3:6), K(15:22,9:12) ,K(15:22,15:22);01.0e+008 *Columns 1 through 80.0094 -0.0007-0.01870.0389-0.00070.00940.0187-0.0389-0.0094-0.00070.03890.0187-0.0389-0.01870.00070.00
31、940.01870.0389-0.0187-0.0389-0.03890.0187-0.0389-0.01870.155800.0187-0.0389-0.0187-0.038900.15580.00940.000700-0.0389-0.0187-0.0007-0.009400-0.0187-0.0389000.0094-0.0007-0.03890.0187000.0007-0.00940.0187-0.03890000000000000000000000000000000000000000000000000000000000000.018700000.0007 -0.03890.0389
32、 -0.0187 -0.00940.0007 -0.0094-0.0389 -0.0187-0.0187 -0.03890.0779-0.0187-0.03890.07790.01870.01870.0187 -0.03890.00940.0007-0.0007-0.0094Columns 9 through 16000000000000000.0094 0.00070000000000000000-0.0007-0.0094000000-0.03890.01870000000.0187-0.0389000000-0.01870-0.03890.01870.0094-0.00070000.01
33、870.0187-0.03890.0007-0.0094000.0972-0.0093-0.0389-0.018700-0.00090.0095-0.00930.0972-0.0187-0.0389000.0095-0.0384-0.0389-0.01870.15580-0.0389-0.0187-0.03890.0187-0.0187-0.038900.1558-0.0187-0.03890.0187-0.038900-0.0389-0.01870.03890.0187-0.0094-0.000700-0.0187-0.03890.01870.03890.00070.0094-0.00090.0095-0.03890.0187-0.00940.0007-1.94080.00950.0095-0.03840.0187-0.0389-0.00070.00940.0095-5.65330.0004-0.000200001.9994-0.0377-0.00020.00040000-0.03775.7119-0.0094-0.0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 1.1 國(guó)家是什么(導(dǎo)學(xué)案) 高二政治 (統(tǒng)編版選擇性必修1)
- 印刷機(jī)械行業(yè)智能化發(fā)展的市場(chǎng)機(jī)遇分析考核試卷
- 2025年銷(xiāo)售傭金合同范本與業(yè)績(jī)激勵(lì)方案3篇
- 2025版木工行業(yè)培訓(xùn)與認(rèn)證服務(wù)合同范本4篇
- 2025年商業(yè)委托銷(xiāo)售協(xié)議
- 2025年合法住房公租房協(xié)議
- 二零二五年度駕校品牌推廣與市場(chǎng)拓展合作合同2篇
- 2025年度個(gè)人二手車(chē)轉(zhuǎn)讓及二手車(chē)增值服務(wù)合同3篇
- 二零二五年度林業(yè)苗木繁育基地承包合同4篇
- 二零二五年度集體產(chǎn)權(quán)房屋買(mǎi)賣(mài)合同樣本(含房屋產(chǎn)權(quán)調(diào)查及核實(shí)要求)
- 《醫(yī)院財(cái)務(wù)分析報(bào)告》課件
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合卷(含答案)
- 2024中國(guó)汽車(chē)后市場(chǎng)年度發(fā)展報(bào)告
- 感染性腹瀉的護(hù)理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 《人工智能基礎(chǔ)》全套英語(yǔ)教學(xué)課件(共7章)
- 廢鐵收購(gòu)廠管理制度
- 物品賠償單范本
- 《水和廢水監(jiān)測(cè)》課件
- 滬教版六年級(jí)數(shù)學(xué)下冊(cè)課件【全冊(cè)】
評(píng)論
0/150
提交評(píng)論