全國初中數(shù)學(xué)競賽試題和答案解析_第1頁
全國初中數(shù)學(xué)競賽試題和答案解析_第2頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、又BC 2BD,所以BD-6,所以DP ,3.2014 年全國初中數(shù)學(xué)競賽試題和答案解析、選擇題:(本題滿分 42 分,每小題 7 分)11111.已知x, y為整數(shù),且滿足(一)(字2)x y xyx, y均不為0,所以x3xy 2(x y).x 2所以x y 1或x y 1.y 1-因此,x y的可能的值有 3 個.2 .已知非負實數(shù)x, y, z滿足x y z 1,則t有( )A. 1 個【答】C.B. 2個C. 3個D. 4(丄),則x y的可能的值3 x y由已知等式得xy x2y2若3xy 2(x y),則(3x 2)(3y 2)x 14.又x,y為整數(shù),可求得或y 2,2xy y

2、z 2zx的最大值為BP(A.4B5C.2D7916【答】At 2xyyz2zx2x(y z)yz 2x( yz)1(y z)241 -、2723173、242x(1x)(1x)xx (x )4424477易知:當(dāng)x3-,yz-時,t 2xy yz2zx取得最大值47771225AEA.直 B. , 22、 .6【答】B.因為AD BC,BEAC,所以P,D,C, E四點共圓,所以BD BCBP BE 12,3.在厶ABC中,ABAC,D為BC的中點,BE AC于E,交AD于P,已知3PE 1,則又易知 AEP s BDP, 所以AEPE, 從而可 得BDDPAEPEBD;U.DP4. 6 張

3、不冋的卡片上分別與有數(shù)字2, 2, 4 , 4 , 6 , 6,從中取出 3 張,則這3 張卡片上所寫的數(shù)字可以作為三角形的三邊 長的概率是()12C23A.B.-D2534【答】B.若取出的 3 張卡片上的數(shù)字互不相同,有2X2X2 = 8 種取法;若取出的 3 張卡片上的數(shù)字有相同的,有 3X4 = 12 種取法.所以,從 6 張不同的卡片中取出 3 張,共有 8+ 12= 20 種取法要使得三個數(shù)字可以構(gòu)成三角形的三邊長,只可能是:(2, 4, 4), (4, 4, 6), (2, 6,6), (4, 6, 6),由于不同的卡片上所寫數(shù)字有重復(fù),所以,取出的3 張卡片上所寫的數(shù)字可以作為

4、三角形的三邊長的情況共有4X2=8 種.因此,所求概率為 -.20515設(shè)t表示不超過實數(shù)t的最大整數(shù),令t t t.已知實數(shù)x滿足x3-18,x則X$X( )A.1B.35C.丄(35)D122【答 D.設(shè)x1a,則31X3(x(X2121)(X1-)(x丄)23/ 2a(a3)xxxxXX所以a(a23)18, |因式分解彳得(a 3)(a23a 6)0, 所以a3.由x13解得1x -(3 5),顯然0 x1,01 1, 所以x11.x2XX6.在厶A BC中,C90,A60,AC 1,D在BC上,E在AB上,使得AlDE為等腰直 角三 三角形,ADE90,則BE的 長為()A.42、3

5、B. 2C.丄心21)D .31【答A.過E作EF BC于F,易知ACDDFE, EFB ACB.C設(shè)EF x,貝UBE 2x,AE 2 2x,DE 2(1 x),3已知P為等腰ABC內(nèi)一點,AB BC, 與PC交于點E,【答】48.由題意可得而PEA如果點PEAPEBPABE的內(nèi)心,PEB CEDAED 180,BPC108,D為AED,所以PEAPEBCEDAED60從而可得PCA 30.又BPC 108,所以PBE12,從而ABD24所以BAD902466,11PAE(2BADCAE)(66230 )18所以PACPAECAE 1830484.已知正整數(shù)a,b,c滿足:1 ab c,ab

6、c 111,ac,BDIII I IIh、| Ai khEPDF AC 1,故12x2、2(1 x)2,即x24x 1 0.又0 x1,故可得x 23.整理得22(a b c) 8abc,所以abc0.2.使得不等式 8對唯一的整數(shù)k成立的最大正整數(shù)n為故BE 2x 42.3二、填空題:(本題滿分 28 分 九每小題 7 分)1 .已知實數(shù)a,b,c滿足1 1 1a b c 1,1,則abc b c a cababc.【答】0.1由題意知1111,所以1 2c1 2a 12b(1 2a)(1 2b)(1 2b)(1 2 c) (12a)(1 2 c) (12a)(1 2b)(1 2c)b2【答

7、】36.17 n k 15【答】144.由條件得7k8由k的唯一性,得k 17且k 1-,所以8n9n8n92 k1k 1871,所以n 144.nnn9872當(dāng)n144時,由7k8可得126 k128,k可取唯一整數(shù)值 127.8 n 9故滿足條件的正整數(shù)n的最大值為 144.這個方程的判別式(6)28280,它有實數(shù)根.所以丄b22 .2a bZ2a b(a b)22aba2b2622 2228.20 分設(shè)a,c的最大公約數(shù)為(a,c) d,aa1d,c c1d,a1, C|均為正整數(shù)且(a1,C|) 1,2299a1G,則b ac d ay,所以d | b,從而d | b,設(shè)b b1d(

8、b為正整數(shù)),則有2 2 2biaiC|,而(ai,Ci) 1,所以ai,Ci均為完全平方數(shù),設(shè)aim ,Gn,則bimn,m,n均為正整數(shù),且(m,n) 1,m n.又a bC111,故d (a1b1C1) 111,即d(m2n2mn) 111.注意到m2n2mn 12221 2 7,所以d 1或d 3.若d 1,則m2n2mn 111,驗算可知只有m 1,n 10滿足等式,此時a 1,不符合題意,故舍去若d 3,則m2n2mn 37,驗算可知只有m 3,n4滿足等式,此時a 27,b36,c 48,符合題意.因此,所求的b 36.、(本題滿分 20 分)設(shè)實數(shù)a,b滿足a2(b21) b(

9、b 2a) 40,a(b 1) b 8,2 2 2解由已知條件可得a b (a b) 40,ab (a b) 8.設(shè)a b x,ab y,則有x2y240,x y 8,.5 分聯(lián)立解得(x,y)(2,6)或(x,y)(6,2). 10 分若(x, y) (2,6),即a b 2,ab 6,則a, b是一元二次方程t22t 60的兩根,但這個方程的判別式(2)224200,沒有實數(shù)根;. 15 分若(x, y) (6,2),即a b 6,ab 2,則a,b是一元二次方程t26t 2 0的兩根,四、 (本題滿分 25 分)如圖,在平行四邊形ABCD中,E為對角線BD上一點,且滿足ECD ACB,A

10、C的延長線與ABD的外接圓交于點F證明: 證明 由ABCD是平行四邊形及已知條件知ECD ACB DAF.5分 又A、 B、 F、 D 四點共圓,所以BDCABD AFD,. .10分所以ECDDAF,. 15分ED CDAB所以. 20 分DF AFAFBAF,所以EDF BAF,故DFE AFB . .25 分五、 (本題滿分 25 分)設(shè)n是整數(shù),如果存在整數(shù)x, y, z滿足n x3y3z33xyz,則稱n具有性質(zhì)P.(1)試判斷 1, 2, 3 是否具有性質(zhì)P;(2)在 1 , 2, 3,,2013 , 2014 這 2014 個連續(xù)整數(shù)中,不具有性質(zhì)P的數(shù)有多少 個?解取x 1,y

11、 z 0,可得113o3033 1 00,所以 1 具有性質(zhì)P;取x y 1,z 0,可得21313033 1 10,所 以 2 具有性質(zhì)P;.-5分若 3 具有性質(zhì)P,則存在整數(shù)x, y, z使得3(x3y z)3(xyz)( xy yz zx),從而可得3|(x yz)3,故3| (xy z),于是有9|(xyz)33(x yz)(xyyzzx),即9 |3,這是不可能的,所以3 不具有性質(zhì)P.10 分(2)記f (x,y,z)33x y3z 3xyz,則f (x,y,z)3(x y)3z 3xy(xy) 3xyz(xyz)33(xy)z(xy z) 3xy(x yz)DFEAFBF=(x

12、y z)33(xy z)(xyyz zx)y z)(x22 2y zxyyz zx)1(xy z)(xy)2(yz)2(z x)2.即f(X ,y, z)2( xyz)(xy)2(yz)2(zx)215 分不妨設(shè)x yrz,如果xy1,yz0,xz1,即xz 1,yz,則有f (x, y, z) 3z1;如果xy0,yz1,xz1,即xy z 1,則有f (x, y, z) 3z 2;如果xy1,yz1,xz2,即xz 2,yz 1,則有f (x, y, z)9(z 1);由此可知,形如3k 1或3k 2或9k( k為整數(shù))的數(shù)都具有性質(zhì)P.20 分又右3|f(x,y,z) (x y z) 3(x y z)(xy yz zx),則3|(x y z)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論