費氏數(shù)及黃金分割_第1頁
費氏數(shù)及黃金分割_第2頁
費氏數(shù)及黃金分割_第3頁
費氏數(shù)及黃金分割_第4頁
費氏數(shù)及黃金分割_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、兔子、花瓣、希臘神殿:費氏數(shù)及黃金分割十三世紀的義大利數(shù)學(xué)家費伯納西(Fibonacci)寫了一本商用的算術(shù)和代數(shù)手冊Liber abacci。在這本書裏,他提出了這麼一個有趣的問題:假定一對兔子在它們出生整整兩個月以後可以生一對小兔子,其後每隔一個月又可以再生一對小兔子。假定現(xiàn)在在一個籠子裡有一對剛生下來的小兔子,請問一年以後籠子裏應(yīng)該有幾對兔子?讓我們仔細地算一下。第一、第二個月,小兔子長成大兔子,但還沒成熟不能生小兔子,所以總共只有一對。第三個月,原有的一對大兔子生了一對小兔子,現(xiàn)在一共有二對了。第四個月,大兔子又生了一對小兔子,但是第二代的那對小兔子還沒成熟,還不能生小兔子,所以總共有

2、三對。第五個月,第一、二兩代的兩對兔子各生了一對小兔子,連同四月份原有的三對,現(xiàn)在一共有五對了。第六個月,在四月份已經(jīng)有的三對兔子各生一對小兔了,連同五月份原有的五對兔子,現(xiàn)在一共有八對了。依此類推,每個月份所有的兔子對數(shù)應(yīng)該等於其上一個月所有的兔子對數(shù)(也就是原有的兔子對數(shù))及其上上個月所有的兔子對數(shù)(這些兔子各生了一對小兔子)的總和。所以每個月的兔子對數(shù)應(yīng)該是1、1、2、3、5、8、13、21、34、55、89、144、233、,每一項都是前兩項之和。因此,一年後籠子裡應(yīng)該有233對兔子了。這些兔子的數(shù)目我們稱之為費氏數(shù)(Fibonacci numbers)。為方便起見,我們用Fn表示第代

3、兔子的數(shù)目。我們觀察到F1 = F = 1而當(dāng)時,F(xiàn)n = Fn - 1 + Fn 2F1F2F3F4F5F6F7F8F9F10F11F12F131123581321345589144233費氏數(shù)的神奇性質(zhì)(一) 如果你把前五個費氏數(shù)加起來再加1,結(jié)果會等於第七個費氏數(shù);如果把前六個費氏數(shù)加起來,再加1,就會得出第八個費氏數(shù)。那麼前n個費氏數(shù)加起來再加1,會不會等於第n+2個費氏數(shù)呢?1 + 1 + 2 + 3 + 5 + 1 = 131 + 1 + 2 + 3 + 5 + 8 + 1 = 21我們可以利用數(shù)學(xué)歸納法證明F1 + F2 + + Fn + 1 = Fn + 2(1) n = 1

4、時,左式 = F1 + 1 = 1 + 1 = 2右式 = F1+2 = F3 = 2故等式成立(2) 對任意自然數(shù) n,假設(shè) n = k 時等式成立,即F1 + F2 + + Fk + 1 = Fk + 2則 F1 + F2 + + Fk + Fk+ 1 + 1= ( F1 + F2 + + Fk + 1 ) + Fk+ 1 = Fk + 2 + Fk+ 1 = Fk+ 3故 n=k+1時等式成立由 (1) (2)與數(shù)學(xué)歸納法原理得證:F1 + F2 + + Fn + 1 = Fn + 2(二) 如果我們分別對偶數(shù)項與奇數(shù)項做加法運算的話,情形又如何呢?1 + 2 + 5 = 81 + 2

5、+ 5 + 13 = 211 + 1 + 3 + 8 = 131 + 1 + 3 + 8 + 21 = 34 我們可以得到下列的結(jié)果:(a) F1 + F3 + + F2n - 1 = F2n (b) 1 + F2 + F4 + + F2n = F2n + 1 <證明(a)> 利用數(shù)學(xué)歸納法:(1) 當(dāng) n = 1 時,左式 = F1 = 1右式 = F2 = 1故等式成立(2) 對任意自然數(shù) n,若n = k 時等式成立,即 F1 + F3 + + F2k - 1 = F 2k 當(dāng) n = k + 1 時, 左式 = F1 + F3 + + F2k - 1 + F2k+ 1 =

6、(F1 + F3 + + F2k - 1 ) + F2k+ 1 = F 2k + F2k+ 1 = F2k+ 2右式 = F2( k+ 1) = F2k+ 2故等式成立由 (1) (2) 與數(shù)學(xué)歸納法原理得證:F1 + F3 + + F2n - 1 = F2n <證明(b)> 與(a)的證法相同。(三) 更不可思議的是,如果我們把第三項的平方加上第四項的平方會得到第七項。試試看其他的情形。Fn2 + Fn + 12 = F2n + 1是不是都成立呢? 32 + 52 = 9 + 25 = 34 82 + 132 = 64 + 169 = 233費氏數(shù)與巴斯卡三角形巴斯卡三角形中除了

7、兩邊上的數(shù)字1之外,其餘的每個數(shù)都等於它頂上兩個數(shù)字的和:乍看之下,似乎與費氏數(shù)沒什麼關(guān)係,但是只要把每條斜線上的數(shù)字加起來,費氏數(shù)就會現(xiàn)身了:真的每一條斜線的和都是費氏數(shù)嗎? 仔細觀察一下,由於三角形內(nèi)的每個數(shù)皆可由它上頭的數(shù)相加得到,所以每條斜線上的數(shù)字和恰好就等於它上兩條斜線的數(shù)字和,也就是Dn = Dn-1 + Dn-2,如圖:再加上D1 = 1,D2 = 1,這正與計算費氏數(shù)的方法不謀而合。費氏數(shù)前後項的比值把費氏數(shù)中的每一項用前一項來除,我們得到一個新數(shù)列: 下圖中橫軸為n的值,縱軸為的取值:上圖中好像趨近某個定值,大約為1.61。讓我們用表示新數(shù)列的第n項 。因為,所以由 這個關(guān)

8、係式,我們可以證明是趨近到一個定值的(證明的過程要費一點手腳,在此不提),我們管這個定值叫做(讀作phi)。直觀上,當(dāng)n愈大時,和之差就愈小,而 和 之差也可以小而不計。所以由 這個式子我們可以推得 (嚴格的證明須要有清楚的極限觀念),亦即,利用解二次方程式根的公式而算得我們注意到滿足下面兩個式子:因此如果我們考慮下面的等比數(shù)列:此數(shù)列則擁有費氏數(shù)的特徵,亦即相鄰兩項的和等於下一項。的連分數(shù)表法:由上面我們知道,因此黃金分割雅典的帕德能神廟 (Parthenon at Athens) 莊嚴、宏偉,被認為是古希臘最偉大的建築之一。有人認為它之所以顯得那麼和諧,是因為這個建築符合黃金律。什麼是黃金

9、律?那就得先從黃金分割談起。假如C為AB線段上的一點,而且,那麼我們就說C點把線段AB黃金分割了,如圖。如果C點把線段AB黃金分割,那麼這個比值是多少呢?這個比值不就是前面提到的嗎?一點也不錯,我們叫它做黃金比值(Golden Ratio)。報紙、書本的長度和寬度之比往往接近這個比值,大概是因為在這個比例之下,它們看起來很順眼,很和諧吧!建築和繪畫方面也常利用這個比值來引起美的感覺,這就叫做黃金律。如何才可以把一線段AB黃金分割呢?引直線BD垂直於AB,令BD = AB,連接AD,並在AD上取E點使DE = BD,再在AB上取C點使AC = AE,則C點就把AB黃金分割了。 請各位自己驗算看看

10、吧! 帕德能神廟中的黃金律: 上圖中所有藍線與紅線之比都是黃金比例。為什麼這樣造形簡單的建築物中會出現(xiàn)如此多的黃金比例呢?如果B、D分別為AC之兩個黃金分割,則D、B分別為AB及DC之黃金分割。因為,又 如此一來,兩個分割點定卻造就了四個黃金比例;這也就是黃金分割神奇的地方。近代法國建築師Le corbusier在設(shè)計著名的馬賽聯(lián)合公寓時,便充分利用黃金律及人的知覺美學(xué)作為其建築舒適度的建構(gòu)標準。聯(lián)合公寓的最大夢想是能夠在最小單位中容納眾多人口,而在建造這種公寓時碰到的最大問題在於如何製造出最舒適的居住空間。傳統(tǒng)的考量主要是著重於機能方面,也許生活上會覺得方便吧,但是仍然無法滿足人的舒適感。

11、Le corbusier以人們雙手上舉的平均高度2.26公尺作為黃金比例的基準比例尺;整個建築使用15個這種基本尺寸來構(gòu)築,而各部分之間也都依此比例設(shè)計,雖然公寓本身的機能較為簡單,但簡單而和諧的黃金比例卻賦與它雄偉氣勢,使居民有寬大而舒適的感受。在我們身邊還有很多東西都是以黃金比例的姿態(tài)出現(xiàn),如:動植物身上的花紋、達文西的畫像、希臘的帕德能神廟、聯(lián)合國大廈、人體結(jié)構(gòu)等,請參考網(wǎng)頁THE GOLDEN PROPORTION。不過,不是每個人都認為黃金比例是美麗的象徵,馬可夫斯基(G. Markowsky)就曾提出質(zhì)疑:金字塔裡有這麼多的尺寸,如高度、寬度、斜長、邊飾寬等,任選其中兩個數(shù),就可以

12、找到大大小小不同的比例。若只因為大金字塔的側(cè)面三角形之高與底邊長之半的比值正是黃金分割就說黃金比例影響金字塔設(shè)計,實在是有點牽強。同樣地,達文西的畫像、希臘的帕德能神廟、聯(lián)合國大廈、人體結(jié)構(gòu)等與黃金比例有關(guān)的說法也都缺乏根據(jù)。他還做了一個實驗,要大家選出最好看的長方形,結(jié)果發(fā)現(xiàn):最多人選擇的是長寬比為1.83的長方形,而不是長寬比為黃金比的長方形。真相到底如何呢?有興趣的人也可以做做相同的實驗。黃金三角形所謂黃金三角形是一個等腰三角形其腰與底的長度比為黃金比值。我們?nèi)粢缘走厼橐谎饕坏妊切蝿t此三角形亦為一黃金三角形,如下圖。圖中三種不同長度的線段,其中最長的線段(粉紅色)與次長的線段(紫色

13、)比是黃金比例,次長的線段(紫色)與最短的線段(綠色)也是黃金比例。畢氏五星旗古希臘時代有個以畢達哥拉斯為首的哲學(xué)家與數(shù)學(xué)家組織,他們以一個在外面圍上正五邊形的五角星作為他們畢氏學(xué)派的標幟:五角星形內(nèi)部隱藏著一個五邊形,畫出這個五邊形的對角線,就產(chǎn)生一個小的倒五角星形,其內(nèi)部也包含一個更小的五邊形,再畫出它的每條對角線又可得到一個小小的五角星形這個過程可以不斷地進行下去。但最令畢氏學(xué)派對五角星形著迷的並不是它能夠自我複製的特性,而是隱藏在它線條之內(nèi)的黃金比例。左圖中任兩條交叉的對角線,都被對方切成兩段不等長的線段,而整段對角線(綠色)與長段(藍色)的比值,恰好就是長段(藍色)與短段(紅色)的比

14、值。這個比值正是黃金比值。而右圖中的兩條黑色對角線將另一條和他們相交的對角線黃金分割於兩交點。再仔細觀察一下,不難發(fā)現(xiàn)在這五邊星形中充滿了大大小小的黃金三角形;下圖中的三個相似三角形都是黃金三角形。黃金矩形及等角螺線長和寬之比為黃金比例的矩形叫做黃金矩形。上圖中ABCD為一黃金矩形,而E、F分別為 AD 及 BC 線段上的黃金分割點,則而所以也就是說,F(xiàn)DCE是一個黃金矩形。因此,黃金矩形ABCD可以被分為一個正方形及一個小的黃金矩形FDCE。這個小的黃金矩形又可以再分成一個正方形和一個更小的黃金矩形。雅典的帕德能神廟便是最好的實物說明,如下圖:所謂等角螺線就是向徑和切線的交角永遠不變的曲線,

15、如下圖:一個黃金矩形可以不斷地被分為正方形及較小的黃金矩形,通過這些正方形的端點(黃金分割點),可以描出一條等角螺線為什麼,而螺線的中心正好是第一個黃金矩形及第二個黃金矩形的對角線交點,也是第二個黃金矩形與第三個黃金矩形的對角線交點。如下圖:我們可以在鸚鵡螺的外殼發(fā)現(xiàn)這樣的螺線。 費氏長方形與費氏螺線我們?nèi)魧⒁涣幸再M氏數(shù)為邊長的正方形相疊,便可不斷地堆出許多更大的長方形。這些長方形我們稱之為費氏長方形,如下圖(請做成動畫)。如果在每個正方形中,加上一個四分之一圓,我們也會描出一條螺線,稱之為費氏螺線。因為其中正方形的邊長並非以固定比值成長,而是費氏數(shù)的相鄰兩項之比例成長;雖然費氏螺線乍看起來很

16、像是一條等角螺線,但其實不是。當(dāng)然,因為費氏數(shù)的相鄰兩項之比會愈來愈接近黃金比值,費氏螺線愈往外畫愈接近等角螺線。黃金角如果我們將一個圓分成兩個弧,而兩個弧的長度比為黃金比例,小弧的圓心角我們稱之為黃金角。如下圖: 由此可知,圓周與大弧長度的比亦為黃金比例,而大弧的圓心角之徑度量即為黃金比值。黃金角有多大呢?經(jīng)過計算大約是137.5度。自然界中的費氏數(shù)自然界中到處可見費氏數(shù)列的蹤跡。樹技上的分枝數(shù),多數(shù)花的瓣數(shù)都是費氏數(shù):火鶴、百合,梅花,桔梗常為,金盞花等等。費氏數(shù)列也出現(xiàn)在松果上。一片片的鱗片在整粒松果上順著兩組螺線排列:一組呈順時針旋轉(zhuǎn),另一組呈反時針,請參考http:/www.mcs.

17、surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html網(wǎng)頁上的圖;仔細瞧瞧,順時針螺線的排列數(shù)目是,而反時針方向則為,而另一組常出現(xiàn)的數(shù)字是及。向日葵也是一樣,常見的螺線數(shù)目為34及55,較大的向日葵的螺線數(shù)目則為89及144,更大的甚至還有144及233。這些全都是費氏數(shù)列中相鄰兩項的數(shù)值。而大部份雛菊的螺線數(shù)目則是21及34:也有些品種雛菊的螺線數(shù)目是34及55:為什麼呢?植物是以種子和嫩芽為開始生長;種子發(fā)芽後,很多細根會長出來,並且向地底下生長,而嫩芽則是迎向陽光。如果用顯微鏡觀察新芽的頂端,你可以看到所有植物的主要徵貌的生長過程包括葉子

18、、花瓣、萼片、小花(floret)等等。在頂端的中央,有一個圓形的組織稱為頂尖(apex);而在頂尖的周圍,則有微小隆起物一個接一個的形成,這些隆起則稱為原基(primordium)。成長時,每一個原基自頂尖移開(頂尖從隆起處向外生長,新的原基則在原地);最後,這些隆起原基會長成葉子、花瓣、萼片等等。每個原基都希望生成的花、蕊、或葉片等等,之後能夠獲得最大的生長空間。例如葉片希望得到充足的陽光,根部則希望得到充足的水份,花瓣或花蕊則希望充份地自我展現(xiàn)好吸引昆蟲來傳粉。因此,原基與原基隔得相當(dāng)開,由於較早產(chǎn)生的原基移開的較遠,所以你可以從它與頂尖之間的距離,來推斷出現(xiàn)的先後次序。另人驚奇的是,我

19、們?nèi)粢勒赵纳蓵r間順序描出原基的位置,便可畫出一條捲繞得非常緊的螺線稱為生成螺線(generative spiral)。之前我們提到過的左右旋螺線,雖然能夠明顯到讓人一眼看出(植物學(xué)家稱之為斜列線,parastichy),但那並不是植物的原基生長模式的實際表徵;就某種程度而言,這些螺線只是視學(xué)上的錯覺。人的眼睛之所以能分辨出斜列線,是因為斜列線是由相鄰的原基所形成。晶體學(xué)先驅(qū)布拉菲兄弟(Auguste and Louise Bravais)發(fā)現(xiàn)原基沿生成螺線交錯排列的數(shù)學(xué)規(guī)則。他們量測相鄰兩原基之間的角度,發(fā)現(xiàn)量得的各個角度非常相近;這些角的共同值就稱為發(fā)散角(divergence ang

20、le)。想像從原基的中心各畫一條直線連到頂尖的中心,然後測量這兩條線的夾角。如下圖中編號29的原基與編號30的原基之間的角度,及編號30與31的原基之間的角。他們並且發(fā)現(xiàn)發(fā)散角往往非常接近137.5度(或 222.5度,如果從另一邊量起),也就是黃金角。一九七年,數(shù)學(xué)家易特生(G. Van Iterson)在一條繞得很緊的螺線上,每隔137.5度畫一個點。結(jié)果他發(fā)現(xiàn),由於這些點的排列方式特殊,因此眼睛會看到兩組互相交錯的螺線一組是順時鐘旋轉(zhuǎn),另一組是逆時鐘(如下圖)。又因為費布納西數(shù)與黃金數(shù)密切相關(guān),所以兩組螺線的數(shù)目是相鄰的費布納西數(shù)。究竟是哪些費布納西數(shù),則要看螺線的旋轉(zhuǎn)有多緊密。 除了在

21、松果的鱗片、向日葵上的小花可以看到明顯的生成螺線外,鳳梨上的生成螺線更是清楚可數(shù),因為它的外皮可被分成一些幾乎是六角形的小格子,如下圖。其中有五條較平緩的平行螺線往右上旋,有八條較陡的平行螺線往左上旋,另外還有更陡的十三條平行螺線是往右上旋。如果我們將鳳梨視為一個圓柱體,並延著一條垂直線將它切開攤平,便得到一個長方形,其左右兩邊表示的是同一條線圓柱體被切開的地方。我們令左方的邊為 x = 0,而右方的邊為 x = 1,下方的邊是 y = 0。鳳梨上一小塊一小塊的六角形小格子是依時間先後,一片片長出來的,而且它們與前一片的距離都是等距。假設(shè)它們以 (0, 0) 為起始點,所以我們在位於 (0,

22、0) 及 (1, 0) 位置(其實是同一點)的六角形小格子上標記0,接著再依生成順序在其他六角形小格子上做標記,這樣才知道它們與 (0, 0) 的距離。若發(fā)散角為黃金角,則第1塊六角形小格子的座標為 (, h)(是黃金比律,),而第n塊六角形小格子的位置是 (x, nh),其中x是的小數(shù)部分(任意一個數(shù)都可分成整數(shù)部分與小數(shù)部分,如:3.14的整數(shù)部分是3,小數(shù)部分是0.14)。如果把這個長方形裹在一個圓柱體上,就會看到一條條螺線像梯子一樣盤旋而上。既然兩個連續(xù)費氏數(shù)之比會趨近於黃金比律,即 ,表示幾乎就是(正整數(shù)),所以的小數(shù)部分幾乎等於0。所以,標記為的六角形小格子會很靠近 y = 0,且

23、隨著k愈大會愈靠近。此外,觀察每條構(gòu)成幾乎是垂直線的六角形小格子,上面的標記都相差某個費氏數(shù)。不同的h會使螺線排列有一點不同,例如:令 h = 就可以讓標記為0的六角形小格子與標記為5, 8, 13, -5, -8, -13的六角形小格子相鄰,如上圖。而且,圖中最明顯的那些螺線,相鄰的六角形小格子的標記都相差= 8,如:由0往左上斜的0, 8, 16, 24, 32, 40, 48,或由3開始的3, 11, 19, 27, 35, 43, 51等。大自然的機制使得原基的生長遵循著有效率堆排的幾何原理。一九七九年,數(shù)學(xué)家伏格(H. Vogel)以電腦模擬原基的生長情形,他用圓點來代表向日葵的原基

24、,在發(fā)散角為固定值的假設(shè)下,試圖找出最佳的發(fā)散角使這些圓點盡可能緊密地排在一起。他的電腦實驗顯示,當(dāng)發(fā)散角小於137.5度,圓點間就會出現(xiàn)空隙,而只會看到一組螺線;同樣的,如果發(fā)散角超過137.5度,圓點間也會出現(xiàn)空隙,但是這次看到的是另一組螺線。因此,如果要使圓點排列沒有空隙,發(fā)散角就必須是黃金角;而這時,兩組螺線就會同時出現(xiàn)。簡言之,要使花頭最密實、最堅固,最有效的堆排方式是讓發(fā)散角等於黃金角。下面的圖是用數(shù)學(xué)軟體模擬伏格的實驗結(jié)果: 發(fā)散角為137.6度 發(fā)散角為137.4度發(fā)散角為137.5度如果你有Maple,可以按這裡取得執(zhí)行上面圖形的程式。你不妨將其中的發(fā)散角改成其他的角度玩一玩。事實上,如果我們選用的發(fā)散角是三百六十度的有理數(shù)倍,就必定會得到一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論