版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、八年級上冊數(shù)學(xué)知識點(diǎn)及基本方法步驟人教版八年級上冊數(shù)學(xué)知識點(diǎn)及基本方法步驟第十一章 全等三角形1 全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。2 全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。3 角平分線的性質(zhì):角平分線平分這個(gè)角,角平分線上的點(diǎn)到角兩邊的距離相等4 角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。5 證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中
2、線、高、等腰三角形、等所隱含的邊角關(guān)系),、回顧三角形判定,搞清我們還需要什么,、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).6 第十二章 軸對稱1如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形;這條直線叫做對稱軸。2軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。3角平分線上的點(diǎn)到角兩邊距離相等。4線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。5與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。6軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。7畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對應(yīng)點(diǎn),按照原
3、圖順序依次連接各點(diǎn)。8點(diǎn)(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(x,-y) 點(diǎn)(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為(-x,y) 點(diǎn)(x,y)關(guān)于原點(diǎn)軸對稱的點(diǎn)的坐標(biāo)為(-x,-y)9等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對等角)等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。10等腰三角形的判定:等角對等邊。11等邊三角形的三個(gè)內(nèi)角相等,等于60°,12等邊三角形的判定: 三個(gè)角都相等的三角形是等腰三角形。 有一個(gè)角是60°的等腰三角形是等邊三角形 有兩個(gè)角是60°的三角形是等邊三角形。13直角三角形中,30°角所對的
4、直角邊等于斜邊的一半。14直角三角形斜邊上的中線等于斜邊的一半第十三章 實(shí)數(shù)算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a0時(shí),a才有算術(shù)平方根。平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒有平方根。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對值是它本身,一個(gè)負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0第十四章 一次函數(shù)1畫函數(shù)圖象的一般步驟:一
5、、列表(一次函數(shù)只用列出兩個(gè)點(diǎn)即可,其他函數(shù)一般需要列出5個(gè)以上的點(diǎn),所列點(diǎn)是自變量與其對應(yīng)的函數(shù)值),二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個(gè)點(diǎn),一般畫一次函數(shù)只用兩點(diǎn)),三、連線(依次用平滑曲線連接各點(diǎn))。2根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。(1)(3)(2)3若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。(1)(2)(3)4正比列函數(shù)一般式:y=kx(k0),其圖象是經(jīng)過原點(diǎn)(0,0)的一
6、條直線。5正比列函數(shù)y=kx(k0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中: 當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小。6已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):把兩點(diǎn)帶入函數(shù)一般式列出方程組 求出待定系數(shù) 把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式7會(huì)從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值)第十五章 整式的
7、乘除與因式分解1同底數(shù)冪的乘法同底數(shù)冪的乘法法則: (m,n都是正數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時(shí),要注意以下幾點(diǎn):法則使用的前提條件是:冪的底數(shù)相同而且是相乘時(shí),底數(shù)a可以是一個(gè)具體的數(shù)字式字母,也可以是一個(gè)單項(xiàng)或多項(xiàng)式;指數(shù)是1時(shí),不要誤以為沒有指數(shù);不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;當(dāng)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),法則可推廣為(其中m、n、p均為正數(shù));公式還可以逆用:(m、n均為正整數(shù))2冪的乘方與積的乘方1. 冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者
8、不能混淆.2. .3. 底數(shù)有負(fù)號時(shí),運(yùn)算時(shí)要注意,底數(shù)是a與(-a)時(shí)不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a34底數(shù)有時(shí)形式不同,但可以化成相同。5要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。6積的乘方法則:積的乘方,等于把積每一個(gè)因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。7冪的乘方與積乘方法則均可逆向運(yùn)用。3. 整式的乘法(1). 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。單項(xiàng)式乘法法則在運(yùn)用時(shí)要注意以下幾點(diǎn):積的系數(shù)等于各
9、因式系數(shù)積,先確定符號,再計(jì)算絕對值。這時(shí)容易出現(xiàn)的錯(cuò)誤的是,將系數(shù)相乘與指數(shù)相加混淆;相同字母相乘,運(yùn)用同底數(shù)的乘法法則;只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個(gè)因式;單項(xiàng)式乘法法則對于三個(gè)以上的單項(xiàng)式相乘同樣適用;單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個(gè)單項(xiàng)式。(2)單項(xiàng)式與多項(xiàng)式相乘單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。單項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):單項(xiàng)式與多項(xiàng)式相乘,積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;運(yùn)算時(shí)要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;在混合運(yùn)
10、算時(shí),要注意運(yùn)算順序。(3)多項(xiàng)式與多項(xiàng)式相乘多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式與多項(xiàng)式相乘時(shí)要注意以下幾點(diǎn):多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積;多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);對含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個(gè)因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個(gè)因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個(gè)一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得4平方差公式¤1平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。&
11、#164;其結(jié)構(gòu)特征是:公式左邊是兩個(gè)二項(xiàng)式相乘,兩個(gè)二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。5完全平方公式¤1 完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍, ¤即;¤口決:首平方,尾平方,2倍乘積在中央;¤2結(jié)構(gòu)特征:公式左邊是二項(xiàng)式的完全平方;公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。¤3在運(yùn)用完全平方公式時(shí),要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)這樣的錯(cuò)誤。添括號法則:添正不變號,添負(fù)各項(xiàng)變號,去括號法則同樣6.
12、 同底數(shù)冪的除法1. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a0,m、n都是正數(shù),且m>n).2. 在應(yīng)用時(shí)需要注意以下幾點(diǎn):法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0.任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無意義.任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即( a0,p是正整數(shù)), 而0-1,0-3都是無意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如,運(yùn)算要注意運(yùn)算順序. 7整式的除法¤1單項(xiàng)式除法單項(xiàng)式單項(xiàng)式相除,把
13、系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;¤2多項(xiàng)式除以單項(xiàng)式多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。8. 分解因式1. 把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.2. 因式分解與整式乘法是互逆關(guān)系.因式分解與整式乘法的區(qū)別和聯(lián)系:(1)整式乘法是把幾個(gè)整式相乘,化為一個(gè)多項(xiàng)式;(2)因式分解是把一個(gè)多項(xiàng)式化為幾個(gè)因式相乘.分解因式的一般方法:1. 提公共因式法1.
14、如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式.這種分解因式的方法叫做提公因式法. 如: 2. 概念內(nèi)涵:(1)因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;(2)公因式可能是單項(xiàng)式,也可能是多項(xiàng)式;(3)提公因式法的理論依據(jù)是乘法對加法的分配律,即: 3. 易錯(cuò)點(diǎn)點(diǎn)評:(1)注意項(xiàng)的符號與冪指數(shù)是否搞錯(cuò);(2)公因式是否提“干凈”;(3)多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號中這一項(xiàng)為+1,不漏掉.2. 運(yùn)用公式法1. 如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.2. 主要公式:(1)平方差公式: (2)完全平方
15、公式: ¤3. 易錯(cuò)點(diǎn)點(diǎn)評:因式分解要分解到底.如就沒有分解到底.4. 運(yùn)用公式法:(1)平方差公式: 應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;二項(xiàng)式的每項(xiàng)(不含符號)都是一個(gè)單項(xiàng)式(或多項(xiàng)式)的平方;二項(xiàng)是異號.(2)完全平方公式:應(yīng)是三項(xiàng)式;其中兩項(xiàng)同號,且各為一整式的平方; 還有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.3. 因式分解的思路與解題步驟:(1)先看各項(xiàng)有沒有公因式,若有,則先提取公因式;(2)再看能否使用公式法;(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.4 分組分解法:1. 分組分解法:利用分組來分解因式的方法叫做分組分解法. 如: 2. 概念內(nèi)涵:分組分解法的關(guān)鍵是如何分組,要嘗試通過分組后是否有公因式可提,并且可繼續(xù)分解,分組后是否可利用公式法繼續(xù)分解因式.3. 注意: 分組時(shí)要注意符號的變化.5. 十字相乘法:1.對于二次三項(xiàng)式,將a和c分別分解成兩個(gè)因數(shù)的乘積, , , 且滿足,往往寫成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公路建設(shè)廉政承諾及交通安全管理合同3篇
- 二零二五年度帶物業(yè)費(fèi)結(jié)算與社區(qū)配套的二手房屋個(gè)人買賣合同3篇
- 二零二五年度智能家居生活體驗(yàn)個(gè)人住房租賃服務(wù)協(xié)議3篇
- 遠(yuǎn)程監(jiān)控技術(shù)課程設(shè)計(jì)
- 應(yīng)用文啟事課程設(shè)計(jì)
- 二零二五年度市場營銷戰(zhàn)略合同3篇
- 二零二五年度公路運(yùn)輸物流信息化平臺建設(shè)合同3篇
- 英國文物修復(fù)課程設(shè)計(jì)
- 2025年度生豬養(yǎng)殖與電子商務(wù)平臺合作合同3篇
- 二零二五年度新型城鎮(zhèn)化項(xiàng)目配套基礎(chǔ)設(shè)施建設(shè)國有土地租賃合同3篇
- 2023-2024學(xué)年廣東省廣州市海珠區(qū)九年級(上)期末英語試卷
- 紅色蛇年大吉年終總結(jié)匯報(bào)
- 農(nóng)業(yè)機(jī)械培訓(xùn)課件
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試英語試題 附答案
- 2024年度心理輔導(dǎo)合作協(xié)議模板版
- GB/T 22723-2024天然氣能量的測定
- 能源崗位招聘筆試題與參考答案(某大型國企)2024年
- 航空與航天學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 麻醉蘇醒期躁動(dòng)患者護(hù)理
- 英語雅思8000詞匯表
- 2024年《13464電腦動(dòng)畫》自考復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論