kw極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)含外文翻譯_第1頁
kw極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)含外文翻譯_第2頁
kw極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)含外文翻譯_第3頁
kw極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)含外文翻譯_第4頁
kw極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)含外文翻譯_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、75kw-4極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)的設計75kw-4極變頻調(diào)速同步電動機電磁方案及控制系統(tǒng)的設計目錄摘要IAbstractII第一章 同步電機概論11.1同步電機的基本特點11.2同步電機的基本類型11.3同步電機的基本結構21.4同步電機主要用途41.5基本技術要求4第二章 同步電動機的工作特性72.1同步電動機的工作原理72.2凸極同步電動機工作特性及分析82.3同步電動機的功率平衡關系10第三章 電機設計基本方法113.1總體設計過程113.2電磁設計11第四章 電磁設計方案計算144.1設計要求144.2方案計算14第五章 電磁設計結果分析405.1復算程序405.2方

2、案結果比較與分析405.3心得與總結42第六章 同步電動機變頻調(diào)速系統(tǒng)設計436.1同步調(diào)速系統(tǒng)類型436.2變頻調(diào)速系統(tǒng)的基本控制類型436.3同步電動機矢量控制系統(tǒng)44第七章 Auto CAD 2004繪圖497.1Auto CAD簡介497.2畫定子沖片圖497.3畫轉子沖片圖507.4畫繞組圖51參考文獻54總結55致謝561.1同步電機的基本特點1.2同步電機的基本類型1.3同步電機的基本結構1.4同步電機主要用途1.5基本技術要求2.1同步電動機的工作原理2.2凸極同步電動機工作特性及分析b)2.3同步電動機的功率平衡關系3.1總體設計過程3.2電磁設計4.1設計要求4.2方案計算

3、方案一方案二方案三一、額定數(shù)據(jù)和技術要求1額定功率7575752相數(shù)3333額定線電壓4004004004額定相電壓230.94230.94230.945額定頻率5050506極數(shù)4447額定效率0.9150.9150.9158額定功率因數(shù)0.9500.9500.9509額定相電流125.22125.22125.2210額定轉速15001500150011額定轉矩477.45477.45477.4512機座中心高(cm)25252513定子槽滿率8085%80.1%14定子繞組電密79.5A/mm28.2115氣隙磁密0.730.88T0.85二、定子沖片設計16定子外徑43434317定子內(nèi)

4、徑30303018定子槽數(shù)48484819電樞拼片條件(1)每圈扇形片數(shù)666(2)重疊數(shù)222(3)每片槽數(shù)888(4)扇形片高8.518.518.51(5)扇形片寬21.521.521.5(6)無軸流拼片條件66620每極每相槽數(shù)44421極距23.5523.5523.5522定子槽形(1) 0.320.320.32(2)0.90.90.9(3)0.10.10.1(4)0.150.150.15(5)1.251.251.25(6)R0.510.510.5123每槽有效面積為絕緣層厚度,E級取=0.027cm,為槽楔厚,取為0.2cm, =2r1.381.381.38(1)直徑位置303030

5、槽節(jié)距1.9631.9631.963槽寬0.320.320.32齒 寬1.6431.6431.643(2)直徑位置30.530.530.5槽節(jié)距1.9951.9951.995槽寬0.90.90.9齒 寬1.0951.0951.095(3)直徑位置333333槽節(jié)距2.1592.1592.159槽寬1.021.021.02齒 寬1.1391.1391.13925定子齒距1.9631.9631.96325平均齒寬=1/3×bz2,bz3中之大者+2(bz2,bz3之最小者)1.1101.1101.11027電樞卡氏系數(shù)其中:槽節(jié)距1.0731.0731.073三、轉子沖片設計28氣隙長度

6、=0.120.120.1229最大氣隙0.1450.1450.14530轉子外徑29.7629.7629.7631磁軛外徑17171732轉子(磁軛)內(nèi)徑88833磁極寬度999磁極尺寸計算(1)0.20.20.2(2)2.5692.5692.569(3)3.8113.8113.811(4)1.7791.7791.779(5)16.01816.01816.018(6)31.97331.97331.973(7)5.15.15.1(8)33.06233.06233.062(9)6.0846.0846.084(10)23.37823.37823.378(11)8.3518.3518.35135磁極壓

7、板厚0.40.40.436磁極壓板寬8.28.28.237氣隙極距比值0.0050.0050.00538氣隙比值1.2081.2081.20839極抱百分值0.7250.7250.72540磁極抱角32.62532.62532.62541等效極弧系數(shù)(查曲線1及2)用公式計算見附錄一0.6440.6440.64442波形系數(shù) (查曲線1及2)或用基波幅值系數(shù),用公式計算見附錄一1.1281.1281.12843磁極偏心距偏心半徑:=14.6340.2460.2460.246四、電樞繞組和鐵心長度計算44繞組并聯(lián)支路數(shù)22245估算每槽導體所占面積1.1041.1041.10446選擇每槽導體數(shù)

8、注意:選偶數(shù)10111047電樞繞組節(jié)距單層匝數(shù)=101110雙層匝數(shù)= 55548每相串聯(lián)導體數(shù) (q=2,3,4或5)80848049 線負荷319.032334.983319.03250估算每根導體的截面積0.0870.0790.08751每根導線并 繞根數(shù)n33352電樞線規(guī)裸徑/絕緣徑 /0.9380.9520.938截面積 0.02540.02540.025453電樞繞組電密 821.654821.654821.65454每槽導線所 占面積1.1061.1791.10655槽滿率0.8010.850.80156繞組系數(shù)Kdp0.9250.9280.92557定子斜槽因數(shù)(一般,可不

9、計算)11185008500880058每極磁通27666612625935276666159電機鐵芯長度 21.46220.3720.7360電樞鐵心長21.46220.3720.7361磁極鐵心長22.46221.3721.7362磁極鐵心凈長 21.33820.30120.64363鐵心有效長21.46220.3720.7364鐵心純長20.38819.35119.69365電樞繞組尺寸(1) (y以槽數(shù)計)22.84722.84722.84718.69318.69318.69314.53914.53914.539(2)14.45114.45114.45111.82311.82311.8

10、239.1969.1969.196(3)5.5795.5795.5794.5654.5654.5653.5513.5513.551(4)26.22826.22826.22821.45921.45921.45916.69116.69116.691(5) bc取1.5cm24.46223.3723.7366每相電樞繞組長3769.0553880.1173710.52467電樞繞組每相電阻 (歐)(1)在75時 (歐)0.0540.0550.053(2)在20時 (歐)0.0440.0460.04468電樞繞組銅重 (千克)15.33715.78915.09869電樞繞組銅毛重 (千克)16.103

11、16.57815.853五、磁路計算70氣隙磁密 85008500880071氣隙安匝875.481875.481906.3872電樞齒磁密 15800-1660015823.06815823.06816381.5373電樞齒磁場強度, 根據(jù)查表133.133.149.3674電樞齒計算高度1.571.571.5775電樞齒安匝數(shù)51.96751.96777.49576電樞軛高度4.494.494.4977電樞軛計算高度4.664.664.6678電樞軛磁密 1456014560150741.0871.0871.08779電樞軛磁路長(拼片定子)16.87816.87816.87880電樞軛磁

12、通分布系 數(shù) 根據(jù)查表40.3530.3530.32981電樞軛磁場強度 根據(jù)查表1161620.8782電樞軛安匝數(shù)95.32495.324115.88583電樞齒軛及氣隙安 匝和1022.7721022.7721099.76084極掌漏磁常數(shù)45.95644.32844.86585極身漏磁常數(shù) 為壓板厚47.64845.91446.48686磁極漏磁常數(shù)102.96599.267100.48687每極漏磁通105309.329101527.33110510.7888磁極磁通28719702727463287717289漏磁系數(shù) P 2 4 6 時 1.041.041.041.0490磁極極

13、身截面 =0.95 (1m/m鋼片)198.606189.272192.35091磁極 極身磁密 140001560014460.65014410.24914957.97592磁極極身磁場強度,根據(jù)查表217.28517.0520.0693磁極極身安匝88.15486.956102.30794磁軛高度4.54.54.595轉子磁軛路長4.9064.9064.90696轉子磁軛長度22.46221.3721.7397轉子磁軛磁密 14206.87414181.24514711.81498轉子磁軛磁場強度,根據(jù) 查表322.322.1626.2999轉子磁軛安匝數(shù)109.409108.723128

14、.985100殘隙長度0.00870.00870.0087101殘隙處截面202.154192.329195.569102殘隙磁密14206.87414181.24514711.814103殘隙安匝數(shù)99.43498.841102.681104每極空載的磁安匝數(shù)1319.7691317.2911433.733六、參數(shù)計算105電樞槽單位漏比磁導 從曲線3查出的計算公式見附錄二1.1581.1581.158106槽面積1.6081.6081.6081071.0931.0931.0931080.8070.8070.807109互感漏磁導0.7610.7610.761110.電樞槽漏磁比磁導1.25

15、81.3621.258111.電樞繞組等效節(jié)距0.8330.8410.833112電樞繞組端接漏磁比磁導1.8862.0211.953113曲折比漏磁導1.1051.1121.105114相帶漏磁比磁導(1)q=整數(shù) (,無阻尼籠)根據(jù)y從曲線5查出,或用公式計算見附錄三(2)q=分數(shù) 0.04960.04990.0496115每相電阻標幺值0.0290.0300.029116每相定子漏抗0.1460.1610.143117每相漏磁電抗標么值0.0790.0870.078118空載額定電壓時的氣隙與殘隙磁勢和974.914974.3221009.061119每相電樞反應磁勢3127.38732

16、94.9853127.387120直軸電構反應常數(shù) 查曲線40.820.820.82121橫軸電樞反應常數(shù)查曲線40.470.470.47122直軸電樞反應磁勢2564.4572701.8882564.457123橫軸電樞反應磁勢1469.8721548.6431469.872124直軸電樞反應電抗標么值2.6302.7732.541125橫軸電樞反應電抗標么值1.5081.5891.457126直軸同步電抗標么值2.7092.8612.619127橫軸同步電抗標么值1.5871.6771.534七、短路比128電樞電抗壓降磁勢77.05485.18978.227129短路磁勢2641.511

17、2787.0772642.684130飽和短路比 0.50.4730.543131不飽和短路比0.3690.350.382132額定電壓時感應電勢標么值1.0521.0561.0510.0660.0740.0651.0541.0581.053133.對應于 的空載磁勢將 及各部磁密 , 均乘以C倍,并計算, 求得各部分的H及F,得對應于的空載磁勢(1)2917142.52779106.82914431.2(2)8962.3248995.8079270.017923.099926.548954.791(3)16683.70216746.03117256.485 根據(jù)查表159.862.283.1

18、93.88697.654130.467(4)15351.75115409.10315878.805 根據(jù)查表124.425.1734.6411.811424.807583.962(5)1428.7961449.0081669.219(6)147115.47143838.49167733.63(7)30642582922945.33082164.8(8)15428.83815443.05916023.703 根據(jù)查表229.329.4840.5149.431150.349206.551(9)15158.07115197.64215760 根據(jù)查表330.53137.78149.641152.09

19、4185.358(10)15158.07115197.64215760.004106.091105.925109.9962017.3542043.1142388.238134滿載勵磁磁勢-2690.89-2844.91-2712.362959.0113031.1173348.4393999.5834157.0634309.172八、勵磁繞組135勵磁繞組線規(guī)(1)圓線 (2)扁線 (安) 5 10 20線規(guī) 1.30 0.02540.02540.0254136勵磁繞組電密初值 2 4 6 450500;500600(隱極)470498472137滿載勵磁電流初值11.93812.64911.9

20、89138勵磁繞組每極匝數(shù) 取接近的整數(shù)336330360139滿載勵磁電流11.90412.59711.970140勵磁繞組電密468.643495.951471.257141空載時的勵磁電流3.1423.1933.186142空載額定電壓時的勵磁電流3.9283.9923.983143短路額定電流時的勵磁電流7.8628.4467.341144.勵磁繞組排列先按比例作圖,確定層數(shù)及各層匝數(shù)(1) 繞組高度圓線:=沿高度方向導體數(shù)扁線:=沒度度方向導體數(shù)4.2344.3664.032(2) 繞組厚度圓線: =沿高度方向導體數(shù)扁線: =沒度度方向導體數(shù)3.0722.8353.456(3)幾何中

21、心距(其中,)1.5361.4181.728145勵磁繞組平均匝長74.36771.44074.110 =0.223.06221.97022.3309.69.69.6 =0.250.350.350.35146勵磁繞組電阻(1)時 8.5398.0569.117(2)時 7.0366.6387.513(3)時 9.7779.22510.439147勵磁繞組銅凈重(千克)22.59521.31824.125148勵磁繞組銅毛重(千克)23.83122.38325.331149額定勵磁電壓122.831122.643131.835九、短路電流,過載能力及暫態(tài)電抗150空載時穩(wěn)定短路電流倍數(shù)0.369

22、0.3500.382151額定負載時穩(wěn)定短路電流倍數(shù)1.5141.4921.631152額定負載時勵磁磁勢與氣隙,殘陽磁勢和的比值4.1024.2674.2701530.4340.4650.166154考慮磁路飲和時過載能力修正系數(shù)KK對應于查曲線61.081.081.02155過載能力標么值1.7211.6961.751156勵磁繞組漏磁導0.6550.6630.661157勵磁繞組漏抗標么值0.1910.2020.185158勵磁繞組總電抗標么值2.8212.9752.727159瞬變直軸電抗標幺值0.2570.2760.250160瞬變橫軸電抗標幺值1.5871.6771.534十、額定

23、負載時的損耗及效率161沖擊短路電流倍數(shù)標幺值7.3566.8487.559162額定負載時的電樞磁密16683.70216746.03117256.485163電樞齒單位鐵耗(瓦/千克) 對硅鋼片(瓦/千克)5.8455.8896.254164電樞齒鐵重千克12.70612.06012.273165電樞齒部鐵耗(瓦)當<100千伏安 取當千伏安 取148.545142.045153.502166額定負載時電樞軛部磁密15351.75115409.10315878.805167電樞軛部單位鐵耗(瓦/千克)4.9494.9865.295168電樞軛部鐵重千克 其中 89.21784.679

24、86.175169電樞軛部鐵耗(瓦)當<100千伏安 取當千伏安 取662.327633.344684.429170電樞槽口氣隙比值2.6672.6672.667171磁極表面磁密脈動系數(shù),對應于查曲線70.20.20.20.20.20.2172磁極表面氣隙磁密脈動幅值1923.1231930.3071989.147173磁極單位表面鐵耗(瓦/厘米)用1mm鋼片時,取槽節(jié)距 0.000550.000550.00059174磁極極掌表面鐵耗0.8440.8090.874175總鐵耗811.717776.198838.806176電樞繞組銅耗2524.5032598.8922485.2291

25、77勵磁損耗1217.0631286.0101313.489178轉子圓周速度(米/秒)23.5523.5523.55179機械損耗710.044692.575698.384180附加損耗 以千伏安為單位375375375181總損耗5.6385.7295.711182效率93%92.9%92.92%十一、主要材料重量183.銅線總重37.93137.10639.223184.硅鋼片重118.472112.446114.433185.磁極鋼片重50.23047.78948.5945.1復算程序5.2方案結果比較與分析單位(cm、kg)方案一方案二方案三每槽導體數(shù)101110氣隙磁密850085

26、008800勵磁繞組電密468.643495.951471.257電樞鐵心長21.46220.3720.73電樞繞組銅重15.33715.78915.098電樞齒鐵重12.70612.06012.273電樞軛部鐵重89.21784.67986.175勵磁繞組銅凈重22.59521.31824.125銅線總重37.93137.10639.223硅鋼片重118.472112.446114.433磁極鋼片重50.23047.78948.594單位:(w/kg)方案一方案二方案三氣隙磁密850085008800每槽導體數(shù)101110電樞齒部鐵耗148.545142.045153.502電樞軛部鐵耗66

27、2.327633.344684.429磁極極掌表面鐵耗0.8440.8090.874總鐵耗811.717776.198838.806電樞繞組銅耗2524.5032598.8922485.229勵磁損耗1217.0631286.0101313.489附加損耗375375375機械損耗710.044692.575698.384總損耗(kw)5.6385.7295.711效率93%92.9%92.92%15823.06815823.06816381.531456014560150748500850088001923.1231930.3071989.147319.032334.983319.03246

28、8.643495.951471.2575.3心得與總結6.1同步調(diào)速系統(tǒng)類型6.2變頻調(diào)速系統(tǒng)的基本控制類型6.3同步電動機矢量控制系統(tǒng)7.1Auto CAD簡介7.2畫定子沖片圖7.3畫轉子沖片圖7.4畫繞組圖1. 陳世坤 電機設計M 北京:機械工業(yè)出版社 20002. 李發(fā)海 朱東起 電機學M 北京:科學出版社 20013. 韓俊良 風力發(fā)電設備的技術特點及發(fā)展前景J 大連起重集團有限公司設計一院20044. 孫國偉 程小華 變速恒頻雙饋風力發(fā)電系統(tǒng)及其發(fā)展趨勢J 華南理工大 學電力學院 2004.5. 中小電機行業(yè)發(fā)展趨勢J 中國電器工業(yè)協(xié)會行業(yè)發(fā)展部 2003.16. 吳旭升 孫俊忠

29、未來電機的發(fā)展與展望J 船電技術 2003.27. 辜成林 陳喬夫 熊永前 電機學M 華中科技大學出版社 20018. 李隆年 王寶玲 電機設計M 清華大學出版社 19929. 中小型電機設計手冊M 機械工業(yè)出版社 上海電器科學研究所10. 電機設計資料匯編M 南昌大學電氣自動化系電機教研室 200411. 孟大偉 孔祥春 AutoCAD在電機設計中的應用J 哈爾濱電工學院學報 1991 Vol.14,No3 12. 中小型三相異步電動機電磁設計手算程序 M 南昌大學電氣自動化系電機教研室13. 彭友元 電機繞組手冊M 遼寧科學技術出版社14. 陳世坤編 電機設計M 機械工業(yè)出版社15. 李發(fā)

30、海等合編 電機學M 科學出版社16. 辜承林 陳橋夫 熊永前 電機學M 華中科技大學出版社17. 張躍峰等編 AUTO CAD 2004入門與提高M 清華大學出版社18. 徐剛 最新國內(nèi)外電機設計制造新工藝新技術與檢修及質量檢測技術標準應用手冊(上)M 銀聲音像出版社19. 張培星 變頻器方案M 北京北洋電子技術有限公司20. 彭兵 相變頻調(diào)速同步電動機設計D 沈陽工業(yè)大學21. 陳伯時 電力拖動自動控制系統(tǒng)M 機械工業(yè)出版社22. 戴文進 徐龍權 電機學M 清華大學出版社NANCHANG UNIVERSITY外文資料原文及譯文(20062010年) 學 院: 信息工程學院 系 電氣與自動化工

31、程系 專 業(yè): 電氣工程及其自動化 班 級: 電機電器062班 學 號: 6101106076 姓 名: 閆 永 佳 指導教師: 黃 劭 剛 起訖日期: 2008.3.24 2008.6.08 Dead-time Compensation of SVPWM Based on DSP TMS320F2812 for PMSMSong Xuelei*, Wen Xuhui, Guo Xinhua, and Zhao FengInstitute of Electrical Engineering, Chinese Academy of Sciences, Beijing, P.R.ChinaE-ma

32、il: songxlAbstractThe dead-time effect in a three-phase voltage source inverter can result in voltage losses, current waveform distortion and torque pulsation. In order to improve the current waveform and decrease the torque pulsation, this paper proposes a dead-time compensation method of SVPWM. Th

33、is method divides the i - i plane into six sectors and compensates the dead-time of SVPWM according to the sector number of stator current vector determined by the - and -axis components of the stator current vector in the two-phase static reference frame. In addition, this method can be implemented

34、 entirely through software without any extra hardware. Finally experiments based on DSP TMS320F2812 are established and made, and the experiment results indicate that the proposed method is correct and feasible.Index Terms-dead-time compensation,SVPWM,PMSM,TMS320F2812I. INTRODUCTIONBecause the perma

35、nent magnet synchronous machine (PMSM) has a lot of advantages such as high power density, high efficiency, high torque to inertia ratio, high reliability, et al1,therefore, the PMSM driving system have been widely used in many application fields, especially in hybrid electric vehicles (HEV) in rece

36、ntyears2-6. In the PMSM driving system, the three-phase voltage source inverter is usually adopted and the IGBT and MOSFET are also used because of their fast switchingfrequency. For the three-phase voltage source inverter, in order to avoid the short circuit of the dc link occurring when the two sw

37、itch devices of the same phase are turned on simultaneously, the dead-time is usually inserted in the gate driving switch signals. During the duration of the dead-time, both of the two switch device of the same phase are turned off. The existing of the dead-time will lead to a series of dead-time ef

38、fect problems such as voltage losses, current waveform distortion and torque pulsation, especially under the condition of small current or low speed.SVPWM (Space Vector Pulse Width Modulation) is a popular modulation method for three-phase voltage source inverter in motor driving system. In order to

39、 improve the current waveform of motors and decrease the torque pulsation of motors, several dead-time compensation methods of SVPWM have been researched and used in the motor driving system7-11. Most of the compensation methods are based on the theory of average voltage deviation. In this paper, a

40、novel dead-time compensation method of SVPWM, which is also based on the theory of average voltage deviation, is proposed. This method divides the i - i plane into six sectors and compensates the deadtime of SVPWM according to the stator current vector angle determined by the - and - axis components

41、 of the stator current vector in the - reference frame. In addition, this method can be implemented entirely through software without any extra hardware design. Finally experiments are made on the PMSM driving platform based on DSP TMS320F2812 to test and verify the proposed compensation method.II.

42、DEAD-TIME COMPENSATION METHODFig.1 shows the topology diagram of the PMSM driving system whose invert unit adopts the three-phase voltage source inverter. In Fig.1, Q1, Q2, Q3, Q4, Q5 and Q6 are six IGBTs of the three-phase voltage source inverter, and D1, D2, D3, D4, D5 and D6 are their reverse par

43、allel diodes respectively. In addition, the driving switch signals g1, g2, g3, g4, g5 and g6 are provided by the control unit of the driving system.Define the phase currents ia, ib and ic are positive when they flow from the inverter to PMSM, and negative when they flow from PMSM to the inverter. Th

44、ere are eight switch combination states for the six IGBTs in the threephase voltage source inverter, and during the duration of dead-time, there are correspondingly six current combination states for three-phase currents ia, ib and ic according to their polarity:(1) ia>0, ib<0 and ic<0;(2)

45、ia>0, ib>0 and ic<0;(3) ia<0, ib>0 and ic<0;(4) ia<0, ib>0 and ic>0;(5) ia<0, ib<0 and ic>0;(6) ia>0, ib<0 and ic>0.It is very important and difficult to detect the zerocross point or the polarity of each phase current.Traditionally, if the zero-cross poi

46、nt is detect directly through A/D converter of DSP or MCU, bigger measurement deviation will be led especially under the condition of small current, which will result in bigger dead-time compensation deviation and also affect the result of dead-time compensation. Therefore, this paper adopts an indi

47、rectly method to detect the zero-cross point of phase current, which is based on the current vector angle in the two-phase static reference frame.For convenient analysis and illustration, place the three-phase currents ia, ib, ic in the three-phase static reference frame and the two current components i , i of the current vector in the two-phase static reference frame into the same figure, which is shown in Fig.2. According to the polarity of three-phase currents ia, ib, ic, the i - i p

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論