數(shù)學(xué)思維的變通性_第1頁
數(shù)學(xué)思維的變通性_第2頁
數(shù)學(xué)思維的變通性_第3頁
數(shù)學(xué)思維的變通性_第4頁
數(shù)學(xué)思維的變通性_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、 數(shù)學(xué)思維的變通性吉小衛(wèi)一、概念數(shù)學(xué)問題千變?nèi)f化,要想既快又準(zhǔn)的解題,總用一套固定的方案是行不通的,必須具有思維的變通性善于根據(jù)題設(shè)的相關(guān)知識,提出靈活的設(shè)想和解題方案。根據(jù)數(shù)學(xué)思維變通性的主要體現(xiàn),本講將著重進(jìn)行以下幾個(gè)方面的訓(xùn)練: (1)善于觀察(2)善于聯(lián)想(3)善于將問題進(jìn)行轉(zhuǎn)化(1)觀察能力的訓(xùn)練任何一道數(shù)學(xué)題,都包含一定的數(shù)學(xué)條件和關(guān)系。要想解決它,就必須依據(jù)題目的具體特征,對題目進(jìn)行深入的、細(xì)致的、透徹的觀察,然后認(rèn)真思考,透過表面現(xiàn)象看其本質(zhì),這樣才能確定解題思路,找到解題方法。雖然觀察看起來是一種表面現(xiàn)象,但它是認(rèn)識事物內(nèi)部規(guī)律的基礎(chǔ)。所以,必須重視觀察能力的訓(xùn)練,使學(xué)生不但

2、能用常規(guī)方法解題,而且能根據(jù)題目的具體特征,采用特殊方法來解題。例1 已知都是實(shí)數(shù),求證 思路分析 從題目的外表形式觀察到,要證的結(jié)論的右端與平面上兩點(diǎn)間的距離公式很相似,而xyO圖121左端可看作是點(diǎn)到原點(diǎn)的距離公式。根據(jù)其特點(diǎn),可采用下面巧妙而簡捷的證法,這正是思維變通的體現(xiàn)。證明 不妨設(shè)如圖121所示,則 在中,由三角形三邊之間的關(guān)系知: 當(dāng)且僅當(dāng)O在AB上時(shí),等號成立。 因此, 例2 已知,試求的最大值。解 由 得又當(dāng)時(shí),有最大值,最大值為思路分析 要求的最大值,由已知條件很快將變?yōu)橐辉魏瘮?shù)然后求極值點(diǎn)的值,聯(lián)系到,這一條件,既快又準(zhǔn)地求出最大值。上述解法觀察到了隱蔽條件,體現(xiàn)了思

3、維的變通性。例3 已知二次函數(shù)滿足關(guān)系,試比較與的大小。xyO2圖122思路分析 由已知條件可知,在與左右等距離的點(diǎn)的函數(shù)值相等,說明該函數(shù)的圖像關(guān)于直線對稱,又由已知條件知它的開口向上,所以,可根據(jù)該函數(shù)的大致圖像簡捷地解出此題。解 (如圖122)由,知是以直線為對稱軸,開口向上的拋物線它與距離越近的點(diǎn),函數(shù)值越小。(2)聯(lián)想能力的訓(xùn)練聯(lián)想是問題轉(zhuǎn)化的橋梁。稍具難度的問題和基礎(chǔ)知識的聯(lián)系,都是不明顯的、間接的、復(fù)雜的。因此,解題的方法怎樣、速度如何,取決于能否由觀察到的特征,靈活運(yùn)用有關(guān)知識,做出相應(yīng)的聯(lián)想,將問題打開缺口,不斷深入。例如,解方程組.這個(gè)方程指明兩個(gè)數(shù)的和為,這兩個(gè)數(shù)的積為。

4、由此聯(lián)想到韋達(dá)定理,、是一元二次方程 的兩個(gè)根,所以或.可見,聯(lián)想可使問題變得簡單。例4 在中,若為鈍角,則的值(A) 等于1 (B)小于1 (C) 大于1 (D) 不能確定思路分析 此題是在中確定三角函數(shù)的值。因此,聯(lián)想到三角函數(shù)正切的兩角和公式可得下面解法。解 為鈍角,.在中且故應(yīng)選擇(B)例5 若思路分析 此題一般是通過因式分解來證。但是,如果注意觀察已知條件的特點(diǎn),不難發(fā)現(xiàn)它與一元二次方程的判別式相似。于是,我們聯(lián)想到借助一元二次方程的知識來證題。證明 當(dāng)時(shí),等式 可看作是關(guān)于的一元二次方程有等根的條件,在進(jìn)一步觀察這個(gè)方程,它的兩個(gè)相等實(shí)根是1 ,根據(jù)韋達(dá)定理就有: 即 若,由已知條

5、件易得 即,顯然也有.例6 已知均為正實(shí)數(shù),滿足關(guān)系式,又為不小于的自然數(shù),求證:思路分析 由條件聯(lián)想到勾股定理,可構(gòu)成直角三角形的三邊,進(jìn)一步聯(lián)想到三角函數(shù)的定義可得如下證法。證明 設(shè)所對的角分別為、則是直角,為銳角,于是 且當(dāng)時(shí),有于是有即 從而就有 (3)問題轉(zhuǎn)化的訓(xùn)練數(shù)學(xué)家G . 波利亞在怎樣解題中說過:數(shù)學(xué)解題是命題的連續(xù)變換??梢姡忸}過程是通過問題的轉(zhuǎn)化才能完成的。轉(zhuǎn)化是解數(shù)學(xué)題的一種十分重要的思維方法。那么怎樣轉(zhuǎn)化呢?概括地講,就是把復(fù)雜問題轉(zhuǎn)化成簡單問題,把抽象問題轉(zhuǎn)化成具體問題,把未知問題轉(zhuǎn)化成已知問題。在解題時(shí),觀察具體特征,聯(lián)想有關(guān)問題之后,就要尋求轉(zhuǎn)化關(guān)系。例如,已知

6、,求證、三數(shù)中必有兩個(gè)互為相反數(shù)。恰當(dāng)?shù)霓D(zhuǎn)化使問題變得熟悉、簡單。要證的結(jié)論,可以轉(zhuǎn)化為:思維變通性的對立面是思維的保守性,即思維定勢。思維定勢是指一個(gè)人用同一種思維方法解決若干問題以后,往往會用同樣的思維方法解決以后的問題。它表現(xiàn)就是記類型、記方法、套公式,使思維受到限制,它是提高思維變通性的極大的障礙,必須加以克服。綜上所述,善于觀察、善于聯(lián)想、善于進(jìn)行問題轉(zhuǎn)化,是數(shù)學(xué)思維變通性的具體體現(xiàn)。要想提高思維變通性,必須作相應(yīng)的思維訓(xùn)練。 轉(zhuǎn)化成容易解決的明顯題目 例11 已知求證、中至少有一個(gè)等于1。思路分析 結(jié)論沒有用數(shù)學(xué)式子表示,很難直接證明。首先將結(jié)論用數(shù)學(xué)式子表示,轉(zhuǎn)化成我們熟悉的形式

7、。、中至少有一個(gè)為1,也就是說中至少有一個(gè)為零,這樣,問題就容易解決了。證明 于是 中至少有一個(gè)為零,即、中至少有一個(gè)為1。思維障礙 很多學(xué)生只在已知條件上下功夫,左變右變,還是不知如何證明三者中至少有一個(gè)為1,其原因是不能把要證的結(jié)論“翻譯”成數(shù)學(xué)式子,把陌生問題變?yōu)槭煜栴}。因此,多練習(xí)這種“翻譯”,是提高轉(zhuǎn)化能力的一種有效手段。例12 直線的方程為,其中;橢圓的中心為,焦點(diǎn)在軸上,長半軸為2,短半軸為1,它的一個(gè)頂點(diǎn)為,問在什么范圍內(nèi)取值時(shí),橢圓上有四個(gè)不同的點(diǎn),它們中的每一點(diǎn)到點(diǎn)的距離等于該點(diǎn)到直線的距離。思路分析 從題目的要求及解析幾何的知識可知,四個(gè)不同的點(diǎn)應(yīng)在拋物線 (1)是,又

8、從已知條件可得橢圓的方程為 (2)因此,問題轉(zhuǎn)化為當(dāng)方程組(1)、(2)有四個(gè)不同的實(shí)數(shù)解時(shí),求的取值范圍。將(2)代入(1)得: (3)確定的范圍,實(shí)際上就是求(3)有兩個(gè)不等正根的充要條件,解不等式組: 在的條件下,得本題在解題過程中,不斷地把問題化歸為標(biāo)準(zhǔn)問題:解方程組和不等式組的問題。 逆向思維的訓(xùn)練逆向思維不是按習(xí)慣思維方向進(jìn)行思考,而是從其反方向進(jìn)行思考的一種思維方式。當(dāng)問題的正面考慮有阻礙時(shí),應(yīng)考慮問題的反面,從反面入手,使問題得到解決。例13 已知函數(shù),求證、中至少有一個(gè)不小于1.思路分析 反證法被譽(yù)為“數(shù)學(xué)家最精良的武器之一”,它也是中學(xué)數(shù)學(xué)常用的解題方法。當(dāng)要證結(jié)論中有“至少”等字樣,或以否定形式給出時(shí),一般可考慮采用反證法。證明 (反證法)假設(shè)原命題不成立,即、都小于1。則 得 ,與矛盾,所以假設(shè)不成立,即、中至少有一個(gè)不小于1。 一題多解訓(xùn)練 由于每個(gè)學(xué)生在觀察時(shí)抓住問題的特點(diǎn)不同、運(yùn)用的知識不同,因而,同一問題可能得到幾種不同的解法,這就是“一題多解”。通過一題多解訓(xùn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論