第四節(jié) 分部積分法ppt課件_第1頁
第四節(jié) 分部積分法ppt課件_第2頁
第四節(jié) 分部積分法ppt課件_第3頁
第四節(jié) 分部積分法ppt課件_第4頁
第四節(jié) 分部積分法ppt課件_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、問題問題 ?dxxex解決思路解決思路 利用兩個函數(shù)乘積的求導(dǎo)法則利用兩個函數(shù)乘積的求導(dǎo)法則.設(shè)設(shè)函函數(shù)數(shù))(xuu 和和)(xvv 具具有有連連續(xù)續(xù)導(dǎo)導(dǎo)數(shù)數(shù), ,vuvuuv , vuuvvu ,dxvuuvdxvu .duvuvudv 分部積分公式分部積分公式一、基本內(nèi)容一、基本內(nèi)容 ?cos xdxx ?cosdxxex ?arcsin xdx ?)1ln(2dxxx 第三節(jié)第三節(jié) 分部積分法分部積分法例例1 1 求積求積分分.cos xdxx解一)解一) 令令,cosxu dvdxxdx 221 xdxxcos xdxxxxsin2cos222顯然,顯然, 選擇不當(dāng),積分更難進(jìn)行選擇不

2、當(dāng),積分更難進(jìn)行.vu ,解二)解二) 令令,xu dvxdxdx sincos xdxxcos xxdsin xdxxxsinsin.cossinCxxx 例例2 2 求積求積分分.2 dxexx解解,2xu ,dvdedxexx dxexx2 dxxeexxx22.)(22Cexeexxxx (再次使用分部積分法)(再次使用分部積分法),xu dvdxex 總結(jié)總結(jié) 若被積函數(shù)是冪函數(shù)和正若被積函數(shù)是冪函數(shù)和正(余余)弦函數(shù)弦函數(shù)或冪函數(shù)和指數(shù)函數(shù)的乘積或冪函數(shù)和指數(shù)函數(shù)的乘積, 就考慮設(shè)冪函就考慮設(shè)冪函數(shù)為數(shù)為 , 使其降冪一次使其降冪一次(假定冪指數(shù)是正整數(shù)假定冪指數(shù)是正整數(shù))u例例3

3、 3 求積求積分分.arctan xdxx解解令令,arctanxu dvxdxdx 22 xdxxarctan)(arctan2arctan222xdxxx dxxxxx222112arctan2 dxxxx)111(21arctan222 .)arctan(21arctan22Cxxxx 例例4 4 求積求積分分 .1arctan2dxxxx解解 ,1122xxx dxxxx21arctan 21arctanxxd)(arctan1arctan122xdxxx dxxxxx222111arctan1 dxxxx 2211arctan1令令txtan dxx 211 tdtt22sectan

4、11 tdtsecCtt )tanln(secCxx )1ln(2 dxxxx21arctanxx arctan12 .)1ln(2Cxx 例例5 5 求積求積分分.ln3 xdxx解解,ln xu ,443dvxddxx xdxx ln3 dxxxx3441ln41.161ln4144Cxxx 總結(jié)總結(jié) 若被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪若被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪函數(shù)和反三角函數(shù)的乘積,就考慮設(shè)對數(shù)函函數(shù)和反三角函數(shù)的乘積,就考慮設(shè)對數(shù)函數(shù)或反三角函數(shù)為數(shù)或反三角函數(shù)為 .u例例6 6 求積求積分分.)sin(ln dxx解解 dxx)sin(ln )sin(ln)sin(lnxxdxx

5、 dxxxxxx1)cos(ln)sin(ln )cos(ln)cos(ln)sin(lnxxdxxxx dxxxxx)sin(ln)cos(ln)sin(ln dxx)sin(ln.)cos(ln)sin(ln2Cxxx 例例7 7 求積求積分分.sin xdxex解解 xdxexsin xxdesin )(sinsinxdexexx xdxexexxcossin xxxdexecossin )coscos(sinxdexexexxx xdxexxexxsin)cos(sin xdxexsin.)cos(sin2Cxxex 注意循環(huán)形式注意循環(huán)形式例例 8 8 已已知知)(xf的的一一個個原原函函數(shù)數(shù)是是2xe , 求求 dxxfx)(.解解 dxxfx)( )(xxdf,)()( dxxfxxf,)(2 Cedxxfx dxxfx)( dxxfxxf)()(222xex .2Cex 例例 9 9 求求nnaxdxI)(22,其中其中n為為正正整數(shù)整數(shù). 解解即時有當(dāng)用分部積分法,)()(1)1(2)()()1(2)()(1,222122122222122122dxaxaaxnaxxdxaxxnaxxaxdxnnnnnnn.arctan1,)32()()1(21),)(1(2)(111222211221nnnnnnnnICaxaIInaxxnaIIaI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論