遙感第三章 海洋衛(wèi)星與陸地衛(wèi)星_第1頁(yè)
遙感第三章 海洋衛(wèi)星與陸地衛(wèi)星_第2頁(yè)
遙感第三章 海洋衛(wèi)星與陸地衛(wèi)星_第3頁(yè)
遙感第三章 海洋衛(wèi)星與陸地衛(wèi)星_第4頁(yè)
遙感第三章 海洋衛(wèi)星與陸地衛(wèi)星_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第三章 海洋衛(wèi)星與陸地衛(wèi)星§3.1裝載有微波傳感器的海洋衛(wèi)星(Ocean-Looking Satellite with Microwave Sensors)因?yàn)槲⒉軌虼┩冈茖樱貏e是有較大功率的主動(dòng)微波雷達(dá)能夠穿透較厚的云層,故帶有微波傳感器的海洋衛(wèi)星經(jīng)常被譽(yù)為全天候遙感衛(wèi)星。表3-1列出了裝載有微波傳感器的海洋衛(wèi)星信息。表3-1: 裝載有微波雷達(dá)的海洋衛(wèi)星衛(wèi)星資助者傳感器運(yùn)行軌道資料RADARSAT (1995/11)CanadaSAR(合成孔徑雷達(dá)) 刈幅: 100km(標(biāo)準(zhǔn)方式)55km(高分辨率方式)分辨率: 28m ×30m(標(biāo)準(zhǔn)方式) 8m ×8m(

2、高分辨率方式)軌道: 太陽(yáng)同步圓形軌道高度:約798 km傾角:98.6o節(jié)點(diǎn)周期: 100.7 min再訪時(shí)間: 24 d(天)QuikSCAT (1999)NASA/USASeaWinds(NASA資助的“海風(fēng)”散射計(jì))SeaWinds是NSCAT的后續(xù)傳感器ADEOS-1(1996-97)JAPANNSCAT(NASA的散射計(jì)) 頻率:14GHz(Ku-波段)TOPEX/POSEIDON(1992/8)CNES/FrenchNASA/USANRA(雙頻率13.6 GHz-Ku波段和5.3 GHz-C波段雷達(dá)高度計(jì))TMR(TOPEX微波輻射計(jì))LRA (激光回反射矩陣)DORIS (雙頻

3、率多卜勒軌道系統(tǒng)接收器)SSALT(單頻率Ku波段緊湊高度計(jì))GPSDR(全球定位系統(tǒng)接收器)軌道類(lèi)型:高度計(jì)軌道軌道范圍:南北緯度66o高度: 約1300 km再訪時(shí)間: 約10 dPASS被定義為在衛(wèi)星繞地球公轉(zhuǎn)的一半的時(shí)間里,對(duì)應(yīng)南北緯度66度之間的星下軌跡;CYCLE由254個(gè)PASS組成,對(duì)應(yīng)約10天。Jason-1(2001/12) CNES/FrenchNASA/USAJMR(Jason的微波輻射計(jì)):改善的微波輻射計(jì)T/P 的后續(xù)衛(wèi)星Geosat Follow-On(1998/2) U.S. NavyALT(高度計(jì))Geosat的后續(xù)衛(wèi)星ERSERS-1(1991)ERS-2(

4、1995)ESAAMI/SAR、AMI/SCAT、RA(AMI合成孔徑雷達(dá)、AMI散射計(jì)、雷達(dá)高度計(jì))頻率: 5.3 GHz(C-波段)再訪時(shí)間: 3天(測(cè)冰),35天(SAR模式) 176天(測(cè)海洋)ATSR(沿軌跡掃描輻射計(jì))波長(zhǎng): 0.55、0.65、0.86、1.6、3.7、10.8、12m(七個(gè)通道)GOME、PRARE、LRR(全球臭氧監(jiān)測(cè)實(shí)驗(yàn)設(shè)備、精確測(cè)距設(shè)備、激光回反射裝置)軌道類(lèi)型:太陽(yáng)同步軌道、準(zhǔn)周期運(yùn)動(dòng)高度: 約777 km節(jié)點(diǎn)周期: 100.5 minENVISAT(2002/3)ESAASAR(高級(jí)合成孔徑雷達(dá))ERS1/2的后續(xù)衛(wèi)星裝載有微波傳感器的海洋衛(wèi)星屬于海洋

5、環(huán)境監(jiān)測(cè)衛(wèi)星,它的特點(diǎn)是掃描范圍大,便于探測(cè)大面積海洋環(huán)境要素,例如海面風(fēng)、海平面高度和海表面溫度等。裝載有可見(jiàn)光和紅外波段傳感器的陸地衛(wèi)星屬于陸地包括海岸帶資源觀測(cè)衛(wèi)星,它的特點(diǎn)是掃描范圍較小,但分辨率特別高,便于精確觀測(cè)小面積土地資源極其變化。裝載有合成孔徑雷達(dá)的衛(wèi)星既可以用于探測(cè)海洋環(huán)境要素,例如油污染和生物膜等生化要素、以及海洋內(nèi)波、海面巨浪和海浪譜等動(dòng)力要素,也可以用于探測(cè)陸地環(huán)境要素,例如水火災(zāi)害等,還可以用于探測(cè)陸地資源要素,例如地下水和礦產(chǎn)資源等。因此,裝載有合成孔徑雷達(dá)的衛(wèi)星是多用途衛(wèi)星。微波傳感器包括高度計(jì)、散射計(jì)、合成孔徑雷達(dá)和微波輻射計(jì)。高度計(jì)是一個(gè)垂直探測(cè)的主動(dòng)雷達(dá),

6、可以測(cè)量衛(wèi)星與地球之間距離、海面地形和粗糙度,并由此估計(jì)風(fēng)速、表面海流和平均波高。散射計(jì)是一個(gè)寬刈幅主動(dòng)雷達(dá),通過(guò)測(cè)量海表面粗糙度可以計(jì)算海面風(fēng)速和風(fēng)向。合成孔徑雷達(dá)是一個(gè)具有高空間分辨率的主動(dòng)雷達(dá),它利用多卜勒效應(yīng)獲得高空間分辨率,可測(cè)量涌浪、內(nèi)波、降雨、海流邊界、海冰位置及性質(zhì)、和大塊浮冰的速度等。微波輻射計(jì)是一個(gè)被動(dòng)微波雷達(dá),它可以測(cè)量海面反射、散射和自發(fā)輻射的輻射度和微波亮溫,并由此可估計(jì)風(fēng)速、水蒸氣、降水率、海表面溫度、海表面鹽度和冰覆蓋量等§3.2 歐洲遙感衛(wèi)星ERS-1 和ERS-2 歐洲遙感衛(wèi)星ERS-1 和ERS-2分別于1991年和1995年由歐空局發(fā)射。由于ER

7、S-1/2采用了先進(jìn)的微波遙感技術(shù)來(lái)獲取全天候與全天時(shí)的圖象,比起傳統(tǒng)的光學(xué)遙感圖象有著獨(dú)特的優(yōu)點(diǎn)。ERS-1/2采用橢圓形太陽(yáng)同步軌道,衛(wèi)星高度為780km,半長(zhǎng)軸為7153.135km,軌道傾角為98.52°,節(jié)點(diǎn)周期為100.465min(分),每天運(yùn)行軌道數(shù)為14 -1/3,降交點(diǎn)的當(dāng)?shù)靥?yáng)時(shí)為10:30AM,空間分辨率的方位方向<30m,距離方向<26.3m,刈幅幅寬為100km。歐空局的ERS1/2是一個(gè)被賦予多種遙感任務(wù)的衛(wèi)星。它載有主動(dòng)微波裝置(AMI)、雷達(dá)高度計(jì)(RA)、沿軌跡掃描輻射計(jì)(ATSR)、全球臭氧監(jiān)測(cè)實(shí)驗(yàn)(GOME)設(shè)備、精確測(cè)距設(shè)備(PR

8、ARE)和激光回反射裝置(LRR)。其中主動(dòng)微波裝置(AMI)結(jié)合了合成孔徑雷達(dá)(SAR)和散射計(jì)的功能。歐空局網(wǎng)頁(yè)/ers/satconc/ 介紹了關(guān)于ERS1/2的詳細(xì)信息。歐空局網(wǎng)頁(yè)關(guān)于SAR 和AMI等傳感器的介紹如下:The first SAR was launched into space by Europe Ariane-4 rocket in July 1991 as one of three main instruments on ESA - ERS-1 spacecraft. It was followed by a second on

9、 ERS-2 in 1995. ERS-1 completed its operation in 1999, overlapping with the new ERS-2 launched in 1995. These highly successful ESA satellites have collected a wealth of valuable data on the Earth, land surfaces, oceans, and polar caps.Active Microwave Instrument (AMI) is the largest onboard system

10、and combines the functions of a Synthetic Aperture Radar (SAR) and a wind scatterometer (SCATT). The AMI has three modes of operation: image mode and wave mode (performed by the SAR); and wind mode (by the SCATT). In image mode, the SAR produces highly detailed images of a 100 km wide strip of the E

11、arth surface day and night and in all weather conditions. In its wind and wave modes, the instrument continuously measures global ocean surface wind speeds and directions, and provides information on the direction and shape of ocean wave patterns.Radar Altimeter (RA) provides accurate measurements o

12、f sea surface elevation, significant wave heights, various ice parameters and an estimate of sea surface wind speed. This measures variations in the satellite height above sea level and ice with an accuracy of a few centimetres and helps provide data to know the satellite exact orbital position. As

13、well as contributing data on the position of ice flows below, the instrument produces ocean surface wave height and wind speed information for climatologists.In the light of the increasing concern about atmospheric ozone levels, the Global Ozone Monitoring Experiment (GOME) instrument was added to t

14、he ERS-2 payload. This ultraviolet and visible light spectrometer provides information on ozone, CFCs and trace gas levels. A more advanced version of GOME will be carried on the Metop spacecraft series, three polar orbiting satellites currently under development. These will produce high-resolution

15、images, detailed vertical temperature and humidity profiles and temperatures of the land and ocean surface on a global basis.Along Track Scanning Radiometer (ATSR) combining an infra-red radiometer and a microwave sounder for the measurement of sea surface temperature, cloud top temperature, cloud c

16、over and atmospheric water vapour content.Precise Range and Range-rate Equipment (PRARE) is included for the accurate determination of the satellite's position and orbit characteristics, and for precise position determination (geodetic fixing).Laser Retro-reflectors (LRR) allow measurement of th

17、e satellite's position and orbit via the use of ground-based laser ranging stations.作為歐洲遙感衛(wèi)星ERS-1 和ERS-2的接替者,又一顆歐洲微波遙感衛(wèi)星ENVISAT 衛(wèi)星于2002年3月由歐空局發(fā)射升空,并于2003年5月正式投入運(yùn)行。星上的高級(jí)合成孔徑雷達(dá)ASAR具有雙極化和多模式的新特點(diǎn),其數(shù)據(jù)的地面分辨率最高達(dá)25m,覆蓋范圍最寬可達(dá)400km,可應(yīng)用于水災(zāi)監(jiān)測(cè)、作物估產(chǎn)、油污調(diào)查和海冰監(jiān)測(cè)等方面。根據(jù)合同,中科院中國(guó)遙感衛(wèi)星地面站可以接收日本JERS衛(wèi)星、加拿大RADARSAT衛(wèi)星、歐空局

18、ERS衛(wèi)星和ENVISAT 衛(wèi)星的合成孔徑雷達(dá)遙感資料。§3.3高度計(jì)專(zhuān)用衛(wèi)星TOPEX/POSEIDON和Jason-1高度計(jì)專(zhuān)用衛(wèi)星TOPEX/POSEIDON(托派克和波塞冬是希臘神化中的兩個(gè)人物)和Jason-1是法國(guó)國(guó)家空間研究中心和美國(guó)航空航天局合作項(xiàng)目,衛(wèi)星載有高度計(jì),按照特別為高度計(jì)設(shè)計(jì)的軌道運(yùn)行。欲了解關(guān)于TOPEX/POSEIDON衛(wèi)星的詳細(xì)信息,可看美國(guó)NASA/JPL的網(wǎng)頁(yè)/mission/topex.html/。該網(wǎng)頁(yè)對(duì)TOPEX/POSEIDON衛(wèi)星的使命作出如下描述:Launched in 1992

19、, TOPEX/Poseidon is a joint venture between CNES and NASA to map ocean surface topography. TOPEX/Poseidon has delivered an astonishing 10+ years of data from orbit. In these 10+ years, it has: 1) Measured sea levels with unprecedented accuracy to better than 5 cm, 2) Continuously observed global oce

20、an topography, 3) Monitored effects of currents on global climate change and produced the first global views of seasonal changes of currents, 4) Monitored large-scale ocean features like Rossby and Kelvin waves and studied such phenomena as El Niño, La Niña, and the Pacific Decadal Oscilla

21、tion, 5) Mapped basin-wide current variations and provided global data to validate models of ocean circulation, 6) Mapped year-to-year changes in heat stored in the upper ocean, 7) Produced the most accurate global maps of tides ever, 8) Improved our knowledge of Earth's gravity field.美國(guó)宇航局網(wǎng)頁(yè)htt

22、p://topex/www/ssa.html和/order/ 介紹了如何獲取TOPEX/Poseidon的數(shù)據(jù)資料。德克薩斯大學(xué)網(wǎng)頁(yè)/eqpac/和網(wǎng)頁(yè)/sst/gsdata.html也介紹了如何使用TOPEX/Poseidon資料進(jìn)行海洋學(xué)研究。美國(guó)宇航局關(guān)于的Jason-1的主頁(yè)/mission/jason-1.html介紹了關(guān)于Jason-1衛(wèi)星的詳細(xì)

23、信息: Jason-1 was launched on 12/07/01. Jason-1 is the first follow-on to the highly successful TOPEX/Poseidon mission that measured ocean surface topography to an accuracy of 4.2 cm, enabled scientists to forecast the 1997-1998 El Niño, and improved understanding of ocean circulation and its eff

24、ect of global climate. The joint NASA-CNES program will launch a French spacecraft on an American Delta II from an American base. Like TOPEX/Poseidon, the payload will include both American and French instruments. Jason-1 altimeter data will be part of a suite of data provided by other JPL-managed o

25、cean missions-the GRACE mission will use two satellites to accurately measure Earth's mass distribution, and the QuikSCAT scatterometer mission will measure ocean-surface winds. 根據(jù)網(wǎng)頁(yè)/mission/mission.html ,美國(guó)宇航局對(duì)于過(guò)去、現(xiàn)在和計(jì)劃將來(lái)發(fā)射的四個(gè)高度計(jì)專(zhuān)用衛(wèi)星的使命做出了以下描述:TOPEX/Poseidon Launched

26、 on August 10, 1992TOPEX/Poseidon data has revolutionized the way the global ocean is studied. For the first time, the seasonal cycle and other temporal variabilities of the ocean have been determined globally with high accuracy, yielding fundamentally important information for testing ocean circula

27、tion models. Major observations were made using TOPEX/Poseidon data on 1) Oceanic circulation including details on the movement of Rossby and Kelvin waves,2) Oceanic and coastal tides, 3)El Niño, La Niña, and the Pacific Decadal Oscillation,4)El Niño-like circulation in the Atlantic O

28、cean,5)Oceanic seasons in the Mediterranean,6)Ocean floor topography from surface data used to refine the geoid model。Jason-1 Launched: December 07, 2001Jason-1 continues the task of providing the important oceanographic data time-series originated by TOPEX/Poseidon, carrying updated versions of the

29、 same instruments. It will initially fly in tandem with TOPEX/Poseidon. (See the Tandem Mission Flash animation for more details). GRACE Launched: March 17, 2002GRACE - Gravity Recovery and Climate Experiment, is flying two identical spacecraft about 220 kilometers apart in a 500-kilometer polar orb

30、it, and over its 5-year lifetime will produce an accurate map of the geoid. The geoid, the manifestation of the Earth's gravity field, is the basic figure on which all altimetry data is based. OSTM Proposed Launch: 2005OSTM - Ocean Surface Topography Mission, is a follow-on to Jason-1. It will t

31、ake oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. §3.4加拿大的合成孔徑雷達(dá)專(zhuān)用衛(wèi)星RADARSAT 加拿大的合成孔徑雷達(dá)專(zhuān)用衛(wèi)星RADARSAT(直譯為雷達(dá)衛(wèi)星)是加拿大空間局于95年11月4日發(fā)射的,它的傳感器SAR具有7種模式、25種波束和不同入射角,因而具有多種分辨率、不同幅寬和多種信息特征。表3-2顯示了雷達(dá)衛(wèi)星

32、RADARSAT探測(cè)的入射角、分辨率和掃描面積的幅寬與工作方式的關(guān)系。表3-2:雷達(dá)衛(wèi)星RADARSAT探測(cè)的入射角、分辨率和掃描面積的幅寬與工作方式的關(guān)系工作模式波束位置入射角(度)標(biāo)稱(chēng)分辨率(米)標(biāo)稱(chēng)幅寬(公里)精細(xì)模式(5個(gè)波束位置)F1- F537-481050x50標(biāo)準(zhǔn)模式(7個(gè)波束位置)S1- S7 20-4930 100x100寬模式 (3個(gè)波束位置)W1-W3 20-4530150x150窄幅ScanSAR (2個(gè)波束位置)SN120-4030300x300 SN231-4630300x300寬幅ScanSARSW120-49 100500x500超高入射角模式(6個(gè)

33、波束位置)H1-H649-5925 75x75超低入射角模式L110-2335170x170RADARSAT采用太陽(yáng)同步軌道,衛(wèi)星高度為796km,軌道傾角為98.6°,節(jié)點(diǎn)周期為100.7min,每天運(yùn)行軌道數(shù)為14,重復(fù)周期為24d(天),衛(wèi)星通過(guò)赤道的當(dāng)?shù)靥?yáng)時(shí)約為6:00am和6:00pm,衛(wèi)星重量為2750kg。RADARSAT衛(wèi)星使用合成孔徑雷達(dá)SAR對(duì)地面和海面進(jìn)行遙感探測(cè)。它的遙感資料適用于全球環(huán)境和自然資源監(jiān)測(cè)以及土地利用研究等。此外,它還提供了對(duì)南極大陸的第一次完整的觀測(cè)。因此,不但海洋遙感專(zhuān)家關(guān)注它,陸地遙感專(zhuān)家和其他許多學(xué)科的科學(xué)家都青睞于它。網(wǎng)頁(yè)http:/

34、www.space.gc.ca/csa_sectors/earth_environment/radarsat/radarsat_info/backgr/#intro/ 對(duì)雷達(dá)衛(wèi)星RADARSAT的介紹如下:RADARSAT is a sophisticated Earth observation satellite developed by Canada to monitor environmental change and the planet's natural resources. Launched in November 1995, RADARSAT provides Cana

35、da and the world with an operational radar satellite system capable of timely delivery of large amounts of data. RADARSAT also provides useful information to both commercial and scientific users in the fields of agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal mon

36、itoring. At the heart of RADARSAT is an advanced radar sensor called Synthetic Aperture Radar (SAR). SAR is a microwave instrument that sends pulsed signals to Earth and processes the received reflected pulses. RADARSAT 's SAR-based technology provides its own microwave illumination and thus ope

37、rates day or night, regardless of weather conditions. RADARSAT-1 circles the Earth at an altitude of 798 kilometres and an inclination of 98.6 degrees to the equatorial plane. Because RADARSAT has a sun-synchronous (dawn-dusk) orbit, its solar arrays are in almost continuous sunlight, enabling it to

38、 primarily rely on solar rather than battery power. The sun-synchronous orbit also means that the satellite overpasses are always at the same local mean time, which is important to many users. RADARSAT-1 offers users a wide variety of beam selections. The satellite's SAR has the unique ability t

39、o shape and steer its beam from an incidence angle of 10 to 60 degrees, in swaths of 45 to 500 kilometres in width, with resolutions ranging from 8 to 100 metres. RADARSAT-1 covers the Arctic daily and most of Canada every three days, depending on the swath selected. Data is downlinked in real time

40、or stored on the onboard tape recorder until the spacecraft is within range of a receiving station. RADARSAT data are received in Canada at the ground stations operated by the Canada Centre for Remote Sensing, Natural Resources Canada. These are located in Prince Albert, Saskatchewan and Gatineau, Q

41、uebec. Additional data reception capabilities are provided through an international network of receiving stations. Data can be made available to users within four hours of its acquisition. RADARSAT International (RSI), a private Canadian company, was established in 1989 to process, market and distri

42、bute RADARSAT-1 data. RSI pays royalties to CSA on the commercial sales of RADARSAT-1 data, which are used to support satellite operations during its five-year lifetime. RSI also manages the Canadian Data Processing Facility in Gatineau, Quebec and promotes the development of commercial data applica

43、tions.除了加拿大RADARSAT衛(wèi)星,還有日本JERS(日本地球資源衛(wèi)星)、歐空局ERS(歐洲遙感衛(wèi)星)和ENVISAT(環(huán)境衛(wèi)星)上裝載有合成孔徑雷達(dá)。JERS-1于1992年由日本宇宙開(kāi)發(fā)事業(yè)集團(tuán)發(fā)射,ERS-1 和ERS-2分別于1991年和1995年由歐空局發(fā)射,ENVISAT于2002年3月由歐空局發(fā)射。這些衛(wèi)星多用于國(guó)土調(diào)查、農(nóng)林漁業(yè)、環(huán)境保護(hù)和災(zāi)害監(jiān)測(cè),還可應(yīng)用于水災(zāi)監(jiān)測(cè)、作物估產(chǎn)、油污調(diào)查、海冰監(jiān)測(cè)和海洋內(nèi)波研究等方面。由于高分辨率和大數(shù)據(jù)量,合成孔徑雷達(dá)圖像的價(jià)格較昂貴。§3.5 載有美國(guó)散射計(jì)的日本衛(wèi)星ADEOS和美國(guó)衛(wèi)星QuikSCAT第一部散射計(jì)出現(xiàn)于美

44、國(guó)1973和1974年的天空實(shí)驗(yàn)室Skylab 衛(wèi)星計(jì)劃。1978年6月至10月,美國(guó)第一個(gè)海洋衛(wèi)星Seasat-A 攜帶的Ku-波段SASS(Seasat-A Satellite Scatterometer,直譯為海洋衛(wèi)星散射計(jì))證明了衛(wèi)星遙感風(fēng)速是可行的。歐空局遙感衛(wèi)星(ERS 1/2)上的散射計(jì)是主動(dòng)微波裝置(AMI)的一種工作模式,屬于單側(cè)掃描的C-波段 (5.3GHz)雷達(dá)。日本國(guó)家航天發(fā)展局(NASDA)http:/kuroshio.eorc.nasda.go.jp/ADEOS/index.html/ 對(duì)ADEOS-1(高級(jí)地球觀測(cè)衛(wèi)星一號(hào))作出了詳細(xì)的介紹。搭載在日本衛(wèi)星ADEO

45、S上的美國(guó)宇航局散射計(jì)NSCAT(NASAs Scatterometer,直譯為NASA的散射計(jì))是第一部雙幅側(cè)掃描的Ku-波段 (13.995 GHz) 的主動(dòng)雷達(dá);1996年9月直至1997年6月期間NSCAT獲得了全球海表面上的風(fēng)矢量連續(xù)資料,但因1997年6月衛(wèi)星故障而不能繼續(xù)工作。從美國(guó)宇航局網(wǎng)站/order/order_nscat.html/ 可以了解有關(guān)散射計(jì)NSCAT數(shù)據(jù)產(chǎn)品的詳細(xì)描述。美國(guó)宇航局衛(wèi)星于1999年6月19日發(fā)射QuikSCAT(直譯為快速散射計(jì)),并使用其星載散射計(jì)SeaWinds(直譯為海風(fēng))接替NSCAT未完

46、成的使命。SeaWinds是 Ku-波段 (13.4GHz)微波雷達(dá),使用1800km寬刈幅,一天測(cè)400,000次,能覆蓋地球90%的面積,目前SeaWinds已經(jīng)收集了大量海洋、陸地和冰的資料。從美國(guó)宇航局網(wǎng)站/order/order_qscat.html/ 可以知道如何索取散射計(jì)SeaWinds數(shù)據(jù)產(chǎn)品。使用散射計(jì)可獲得全天候、高分辨率的全球海洋近表面風(fēng)資料。利用這些資料可確定海洋對(duì)大氣強(qiáng)迫的響應(yīng),進(jìn)一步開(kāi)展海氣相互作用研究。借助于風(fēng)的衛(wèi)星遙感數(shù)據(jù),并利用大氣及海洋數(shù)值預(yù)報(bào)模型,可以改進(jìn)全球和近海天氣預(yù)報(bào),改進(jìn)風(fēng)暴預(yù)警和監(jiān)測(cè)水平。

47、7;3.6陸地和海岸帶資源觀測(cè)衛(wèi)星(Land and Coastal Zone Observation Satellite)所謂陸地和海岸帶資源觀測(cè)衛(wèi)星就是照相衛(wèi)星或運(yùn)用數(shù)字相機(jī)的照相衛(wèi)星,將實(shí)時(shí)所攝影像下傳到地面接收站儲(chǔ)存,并做進(jìn)一步處理。其功能要視它所攜載的光學(xué)照相器材涵蓋的光譜波段和分辨率,或者它所攜載的合成孔徑雷達(dá)成像分辨率而定。就一般照相功能而言,它可以包括可見(jiàn)光、紅外和熱紅外等波段。比較精密的相機(jī),分辨率可達(dá)十米,影像可以膠卷或電子數(shù)字方式呈現(xiàn)。若分辨率達(dá)到五公尺以?xún)?nèi),則具有較大的軍事用途。合成孔徑雷達(dá)成像分辨率一般不如可見(jiàn)光和紅外波段的傳感器,因?yàn)楹笳卟ㄩL(zhǎng)更短。用于軍事偵查照相的

48、衛(wèi)星多屬返回式系列衛(wèi)星,一般使用膠卷紀(jì)錄影像,沿軌道拍攝后,載著膠卷的回收艙隨后按指令脫離衛(wèi)星重返大氣,降落于陸地后被回收。表3-3列出了比較著名的陸地和海岸帶資源觀測(cè)衛(wèi)星。表3-3: 陸地資源和海岸帶觀測(cè)衛(wèi)星衛(wèi)星資助者傳感器運(yùn)行軌道資料LandsatLandsat-5(1984)Landsat-7(1999)美國(guó)MSS分辨率:30m(波段1-4)TM分辨率:30m(波段1-4)120m(波段6)增強(qiáng)型主題繪圖儀(ETM+)分辨率:15m(波段8)軌道:太陽(yáng)同步軌道高度:約705km再訪時(shí)間:16d(天)SPOTSPOT-5(2003)SPOT-4(1998)SPOT-2(1990)法國(guó)HRV

49、HRVIR刈幅:約60km分辨率:10m(全色波段)20m(多波段) 軌道:太陽(yáng)同步軌道高度:約822km再訪時(shí)間:26dMOSMOS-1(1987-95)MOS-2(1990-96)日本MESSRVTIRMSR軌道:太陽(yáng)同步軌道高度:約909km節(jié)點(diǎn)周期:約103 min再訪時(shí)間:17d中巴地球資源衛(wèi)星01星(1999/10)02星(2003)計(jì)劃中國(guó)和巴西20m分辨率的五波段CCD相機(jī),一臺(tái)78m和156m分辨率的四波段紅外掃描儀,一臺(tái)258m分辨率的兩波段寬視場(chǎng)成像儀軌道:太陽(yáng)同步軌道美國(guó)陸地衛(wèi)星系列使用Landsat命名。Landsat-5裝載有主題成像傳感器(TM),是第二代陸地資源

50、衛(wèi)星。1993年發(fā)射的Landsat-6因未能進(jìn)入軌道而失敗。為保持對(duì)地球的長(zhǎng)期連續(xù)監(jiān)測(cè),1999年4月發(fā)射了Landsat-7。Landsat-7是第三代陸地資源衛(wèi)星,它裝載了一臺(tái)增強(qiáng)型主題繪圖儀ETM+,比Landsat-5增加了一個(gè)15m分辨率的全色波段(見(jiàn)表3-4的8號(hào)波段),提高了在熱紅外波段(見(jiàn)表3-4的6號(hào)波段)的空間分辨率,使分辨率達(dá)到了60m。Landsat-7每一景影像對(duì)應(yīng)的地面面積均為185km×185km,16天即可覆蓋全球一次。它采用太陽(yáng)同步近圓形近極軌軌道,高度為705km,傾角為98.22°,節(jié)點(diǎn)周期為98.9min,每天繞地球15圈,穿越赤道

51、時(shí)間為10:00am,刈幅寬度為185公里,在16天的重復(fù)周期里,衛(wèi)星共繞行233圈。表3-4顯示了Landsat-7裝載的增強(qiáng)型主題繪圖儀ETM+的技術(shù)信息。表3-4:Landsat-7裝載的增強(qiáng)型主題繪圖儀ETM+的技術(shù)信息波段號(hào)波段類(lèi)型波譜范圍(m)地面分辨率1Blue-Green(藍(lán)綠)0.450-0.51530m2Green(綠)0.525-0.60530m3Red(紅)0.630-0.6930m4Near IR(近紅外)0.775-0.9030m5SWIR(中紅外)1.550-1.7530m6LWIR(熱紅外)10.40-12.560m7SWIR(中紅外)2.090-2.3530m

52、8Pan(全色)0.520-0.9015m自1986年以來(lái),法國(guó)SPOT IMAGE公司先后發(fā)射了SPOT(斯波特)-、SPOT-2、SPOT-3和SPOT-4陸地資源衛(wèi)星。SPOT衛(wèi)星采用832公里高度的太陽(yáng)同步軌道,重復(fù)周期為26天,在重復(fù)周期內(nèi)衛(wèi)星環(huán)繞地球369圈,軌道傾角為98.721°,節(jié)點(diǎn)周期為101.469min,降交點(diǎn)時(shí)間為10:30am,刈幅寬度為60km。衛(wèi)星上載有兩臺(tái)高分辨率可見(jiàn)光相機(jī)(HRV),它具備10m分辨率的全色波段以及20m分辨率的三個(gè)波段(50 0.59m,0.61 0.68m,0.78 0.89m)。這些相機(jī)擁有側(cè)視觀測(cè)能力,可橫向擺動(dòng)27

53、6;,衛(wèi)星還能進(jìn)行立體觀測(cè)。SPOT-4的傳感器增加了新的中紅外波段(1.58 1.75m),可用于估測(cè)植物水分,增強(qiáng)了對(duì)植物的分類(lèi)識(shí)別能力,并有助于冰雪探測(cè)。該衛(wèi)星還裝載了一個(gè)植被儀,可連續(xù)監(jiān)測(cè)植被情況。新一代遙感衛(wèi)星SPOT-5的分辨率更高,全色波段的地面分辨率由m提高到m和.m,多光譜波段則由m提高到m,并可實(shí)現(xiàn)同軌立體成像。中國(guó)遙感衛(wèi)星地面站提供Landsat和SPOT的數(shù)據(jù)接收服務(wù)。中國(guó)和巴西合作研制的中巴地球資源衛(wèi)星01號(hào)(CBERS-1)于1999年10月發(fā)射,是我國(guó)的第一代數(shù)字傳輸型地球資源衛(wèi)星。表3-5顯示了中巴地球資源衛(wèi)星01號(hào)(CBERS-1)的參數(shù)和技術(shù)信息。表3-5:

54、 中巴地球資源衛(wèi)星01號(hào)(CBERS-1)的傳感器信息紅外多光譜掃描儀(IRMSS)CCD相機(jī)寬視場(chǎng)成像儀(WFI)波段數(shù): 四波段波譜范圍:B6:0.50 1.10mB7:1.55 1.75mB8:2.08 2.35mB9:10.4 12.5m覆蓋寬度:119.50km空間分辨率:B6 B8:77.8mB9:156m波段數(shù):五波段波譜范圍: B1:0.45 0.52mB2:0.52 0.59mB3:0.63 0.69mB4:0.77 0.89mB5:0.51 0.73m覆蓋寬度:113km空間分辨率:19.5m(星下點(diǎn))波段數(shù):兩波段波譜范圍:B10:0.63 0.69mB11:0.77 0

55、.89m覆蓋寬度:890km空間分辨率:256m中巴地球資源衛(wèi)星01號(hào)采用太陽(yáng)同步軌道,軌道平均高度為778km,傾角為98.5°,重復(fù)周期為26天,平均節(jié)點(diǎn)周期為100.26min,平均降交點(diǎn)地方時(shí)為10:30am,每天環(huán)繞地球14+9/26圈,相鄰軌道間距離為107.4km,相鄰軌道間隔時(shí)間為 4 天,刈幅寬度為185km。星上裝載了五波段的電荷耦合器件攝像機(jī)(CCD相機(jī))、四波段的紅外多光譜掃描儀(IRMSS)、兩波段的寬視場(chǎng)成像儀(WFI)、以及高密度數(shù)字磁記錄儀(HDDR)、數(shù)據(jù)采集系統(tǒng)(DCS)空間環(huán)境監(jiān)測(cè)系統(tǒng)(SEM)和數(shù)據(jù)傳輸系統(tǒng)(DTS)等有效載荷。它可以通過(guò)不同的

56、遙感器獲得可見(jiàn)光、近紅外、熱紅外等11個(gè)波段不同幅寬的遙感圖像。CCD相機(jī)在星下點(diǎn)的空間分辨率為19.5m,掃描幅寬為113km,在可見(jiàn)和近紅外光譜范圍內(nèi)有4個(gè)波段和1個(gè)全色波段,它具有側(cè)視功能,側(cè)視范圍為±32°,并帶有內(nèi)定標(biāo)系統(tǒng)。紅外多光譜掃描儀(IRMSS)有1個(gè)全色波段、2個(gè)短波紅外波段和1個(gè)熱紅外波段,掃描幅寬為119.5km,在可見(jiàn)光、近紅外和中紅外波段的空間分辨率為78m,在熱紅外波段的空間分辨率為156m,它還帶有內(nèi)定標(biāo)系統(tǒng)和太陽(yáng)定標(biāo)系統(tǒng)。寬視場(chǎng)成像儀(WFI)有1個(gè)可見(jiàn)光波段和1個(gè)近紅外波段,星下點(diǎn)的可見(jiàn)分辨率為258m,掃描幅寬為890km;由于這種傳感

57、器具有較寬的掃描能力,因此,它可以在很短的時(shí)間內(nèi)獲得高重復(fù)率的地面覆蓋;其星上定標(biāo)系統(tǒng)包括一個(gè)漫反射窗口,可進(jìn)行相對(duì)輻射定標(biāo)。表1給出了這三種遙感器的一些基本特征參數(shù)??梢?jiàn)光波段圖像用于繪制地圖、國(guó)土資源普查、災(zāi)害監(jiān)測(cè)、水系、城市規(guī)劃、測(cè)量耕地、森林覆蓋面積和地面植被分析;近紅外波段圖像用于土壤和植被水分測(cè)量、環(huán)境污染監(jiān)測(cè)、農(nóng)作物估產(chǎn)、地質(zhì)與礦產(chǎn)資源情況調(diào)查;熱紅外波段圖像用于植被和環(huán)境監(jiān)測(cè)。中國(guó)遙感衛(wèi)星地面站和中國(guó)資源衛(wèi)星應(yīng)用中心提供CBERS-1的數(shù)據(jù)產(chǎn)品服務(wù)。§3.7 高分辨率商業(yè)遙感衛(wèi)星美國(guó)Digital Globe公司的QuickBird(直譯為快鳥(niǎo))衛(wèi)星是目前世界上商業(yè)衛(wèi)星中分辨率最高、性能較優(yōu)的一顆衛(wèi)星。圖3-1顯示了QuickBird衛(wèi)星從450km高空探測(cè)到的北京市公主墳立交橋的圖像,圖3-2顯示了QuickBird拍攝的三峽大壩衛(wèi)星圖片,圖中車(chē)輛和樹(shù)木清晰可辨。圖3-1:QuickBird衛(wèi)星從450km高空探測(cè)到的北京市公主墳立交橋的圖像(引自 )圖3-2: QuickBird拍攝的三峽衛(wèi)星圖片(引自 )QuickBird衛(wèi)星的全色波段分辨率為0.61m,彩色多光譜分辨率為2.44m,幅寬為16.5km。表3-6顯示了QuickBird衛(wèi)星的主要技術(shù)參數(shù)。中國(guó)遙感衛(wèi)星地面站與美國(guó)和日本的相關(guān)部門(mén)已

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論