最全的的初中數(shù)學公式大全_第1頁
最全的的初中數(shù)學公式大全_第2頁
最全的的初中數(shù)學公式大全_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、'.最全的的初中數(shù)學公式大全1 過兩點有且只有一條直線2 兩點之間線段最短3 同角或等角的補角相等4 同角或等角的余角相等5 過一點有且只有一條直線和已知直線垂直6 直線外一點與直線上各點連接的所有線段中,垂線段最短7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內錯角相等,兩直線平行11 同旁內角互補,兩直線平行12 兩直線平行,同位角相等13 兩直線平行,內錯角相等14 兩直線平行,同旁內角互補15 定理 三角形兩邊的和大于第三邊16 推論 三角形兩邊的差小于第三邊17 三角形內角和

2、定理 三角形三個內角的和等于 180°18 推論 1 直角三角形的兩個銳角互余19 推論 2 三角形的一個外角等于和它不相鄰的兩個內角的和20 推論 3 三角形的一個外角大于任何一個和它不相鄰的內角21 全等三角形的對應邊、對應角相等22 邊角邊公理 (SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等23 角邊角公理 (ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等24 推論 (AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等25 邊邊邊公理 (SSS) 有三邊對應相等的兩個三角形全等26 斜邊、直角邊公理 (HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等2

3、7 定理 1 在角的平分線上的點到這個角的兩邊的距離相等28 定理 2 到一個角的兩邊的距離相同的點,在這個角的平分線上29 角的平分線是到角的兩邊距離相等的所有點的集合30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角 )31 推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論 3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理 如果一個三角形有兩個角相等, 那么這兩個角所對的邊也相等 (等角對等邊 )35推論 1三個角都相等的三角形是等邊三角形36推論 2有一個角等

4、于 60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于 30°那么它所對的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;.'.41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理 1 關于某條直線對稱的兩個圖形是全等形43 定理 2 如果兩個圖形關于某直線對稱, 那么對稱軸是對應點連線的垂直平分線44 定理 3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸

5、上45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分, 那么這兩個圖形關于這條直線對稱46 勾股定理 直角三角形兩直角邊 a、b 的平方和、等于斜邊 c 的平方,即a2+b2=c247勾股定理的逆定理如果三角形的三邊長 a、 b、 c 有關系 a2+b2=c2,那么這個三角形是直角三角形48定理 四邊形的內角和等于 360°49四邊形的外角和等于 360°50多邊形內角和定理n 邊形的內角的和等于 (n-2) ×180°51推論 任意多邊的外角和等于 360°52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形

6、的對邊相等54推論 夾在兩條平行線間的平行線段相等55平行四邊形性質定理3平行四邊形的對角線互相平分56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理 1矩形的四個角都是直角61矩形性質定理 2矩形的對角線相等62矩形判定定理 1有三個角是直角的四邊形是矩形63矩形判定定理 2對角線相等的平行四邊形是矩形64菱形性質定理 1菱形的四條邊都相等65菱形性質定理 2菱形的對角線互相垂直,并且每一條

7、對角線平分一組對角66菱形面積 =對角線乘積的一半,即 S=(a×b) ÷267菱形判定定理 1四邊都相等的四邊形是菱形68菱形判定定理 2對角線互相垂直的平行四邊形是菱形69正方形性質定理1 正方形的四個角都是直角,四條邊都相等70正方形性質定理2 正方形的兩條對角線相等, 并且互相垂直平分, 每條對角線平分一組對角71 定理 1 關于中心對稱的兩個圖形是全等的72 定理 2 關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73 逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點, 并且被這一點平分, 那么這兩個圖形關于這一點對稱74 等腰梯形性質定理等腰梯

8、形在同一底上的兩個角相等75 等腰梯形的兩條對角線相等76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形;.'.77 對角線相等的梯形是等腰梯形78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等, 那么在其他直線上截得的線段也相等79 推論 1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰80 推論 2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b) ÷2 S=L ×h83(1)比例的

9、基本性質 如果 a:b=c:d, 那么 ad=bc 如果 ad=bc, 那么 a:b=c:d84(2)合比性質 如果 a/b=c/d, 那么 (a ±b)/b=(c d)/d±85(3)等比性質 如果 a/b=c/d= =m/n(b+d+ +n 0),那么(a+c+m)/(b+d+n)=a/b86 平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87 推論 平行于三角形一邊的直線截其他兩邊 (或兩邊的延長線 ),所得的應線段成比例88 定理 如果一條直線截三角形的兩邊 (或兩邊的延長線 )所得的對應線段成比例,那么這條直線平行于三角形的第三邊89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90 定理 平行于三角形一邊的直線和其他兩邊 (或兩邊的延長線 )相交,所構成的三角形與原三角形相似91 相似三角形判定定理 1 兩角對應相等,兩三角形相似 (ASA)92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似 (SAS)94 判定定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論