




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1.1.3 3.1 .1 單調(diào)性與最大(?。┲祮握{(diào)性與最大(小)值 第一課時(shí)第一課時(shí) 函數(shù)單調(diào)性的概念函數(shù)單調(diào)性的概念問題提出問題提出 德國有一位著名的心理學(xué)家艾賓浩斯,對(duì)人類德國有一位著名的心理學(xué)家艾賓浩斯,對(duì)人類的記憶牢固程度進(jìn)行了有關(guān)研究的記憶牢固程度進(jìn)行了有關(guān)研究. .他經(jīng)過測試,得他經(jīng)過測試,得到了以下一些數(shù)據(jù):到了以下一些數(shù)據(jù):時(shí)間間隔時(shí)間間隔 t剛記剛記憶完憶完畢畢20分分鐘后鐘后60分分鐘后鐘后8-9小時(shí)小時(shí)后后1天天后后2天天后后6天天后后一個(gè)一個(gè)月后月后記憶量記憶量y(百分比百分比)10058.244.235.833.727.825.421.1以上數(shù)據(jù)表明,記憶量以上數(shù)據(jù)表
2、明,記憶量y y是時(shí)間是時(shí)間間隔間隔t t的函數(shù)的函數(shù). . 艾賓浩斯根據(jù)這艾賓浩斯根據(jù)這些數(shù)據(jù)描繪出了著名的些數(shù)據(jù)描繪出了著名的“艾賓浩艾賓浩斯遺忘曲線斯遺忘曲線”, ,如圖如圖. .123tyo20406080100思考思考1:1:當(dāng)時(shí)間間隔當(dāng)時(shí)間間隔t t逐漸增逐漸增 大你能看出對(duì)應(yīng)的函數(shù)值大你能看出對(duì)應(yīng)的函數(shù)值y y有什么變化趨勢(shì)?通過這個(gè)有什么變化趨勢(shì)?通過這個(gè)試驗(yàn),你打算以后如何對(duì)待試驗(yàn),你打算以后如何對(duì)待剛學(xué)過的知識(shí)剛學(xué)過的知識(shí)? ?思考思考2:2:“艾賓浩斯遺忘曲線艾賓浩斯遺忘曲線”從左至右是逐漸下降的,對(duì)此,從左至右是逐漸下降的,對(duì)此,我們?nèi)绾斡脭?shù)學(xué)觀點(diǎn)進(jìn)行解釋?我們?nèi)绾斡脭?shù)
3、學(xué)觀點(diǎn)進(jìn)行解釋?tyo20406080100123知識(shí)探究(一)知識(shí)探究(一)yxo考察下列兩個(gè)函數(shù)考察下列兩個(gè)函數(shù): :( )f xx2( )(0)f xxx (1 1) ; (2)(2)xyo思考思考1 1: :這兩個(gè)函數(shù)的圖象分別是什么?二者有何這兩個(gè)函數(shù)的圖象分別是什么?二者有何共同特征?共同特征?思考思考2 2: :如果一個(gè)函數(shù)的圖象從左至右逐漸上升,如果一個(gè)函數(shù)的圖象從左至右逐漸上升,那么當(dāng)自變量那么當(dāng)自變量x x從小到大依次取值時(shí),函數(shù)值從小到大依次取值時(shí),函數(shù)值y y的的變化情況如何?變化情況如何?( )f x12xx1()f x2()f x思考思考3 3: :如圖為函數(shù)如圖為
4、函數(shù) 在定義域在定義域I I內(nèi)某個(gè)區(qū)間內(nèi)某個(gè)區(qū)間D D上的圖象,對(duì)于該上的圖象,對(duì)于該區(qū)間上任意兩個(gè)自變量區(qū)間上任意兩個(gè)自變量x x1 1和和x x2 2,當(dāng)當(dāng) 時(shí),時(shí), 與與 的大小的大小關(guān)系如何關(guān)系如何?xyox1x2( )yf x1()f x2()f x思考思考4 4: :我們把具有上述特點(diǎn)的函數(shù)稱為增函數(shù),我們把具有上述特點(diǎn)的函數(shù)稱為增函數(shù),那么怎樣定義那么怎樣定義“函數(shù)函數(shù) 在區(qū)間在區(qū)間D D上是增函數(shù)上是增函數(shù)”?( )f x( )f x12,x x1x2x1( )f x2()f x)(xf對(duì)于對(duì)于函數(shù)函數(shù)定義域定義域I I內(nèi)某個(gè)區(qū)間內(nèi)某個(gè)區(qū)間D D上的任意兩個(gè)自變量上的任意兩個(gè)自
5、變量 的值的值,若當(dāng),若當(dāng) 時(shí),都有時(shí),都有 , ,則稱函數(shù)則稱函數(shù) 在區(qū)間在區(qū)間D D上是增函數(shù)上是增函數(shù). . 知識(shí)探究(二)知識(shí)探究(二)考察下列兩個(gè)函數(shù)考察下列兩個(gè)函數(shù): :( )f xx 2( )(0)f xxx (1 1) ; (2)(2)1()f x2()f x( )yf xxyoxoy思考思考1 1: :這兩個(gè)函數(shù)的圖象分別是什么?這兩個(gè)函數(shù)的圖象分別是什么?二者有何二者有何 共同特征?共同特征?( )f x思考思考2 2: :我們把具有上述特點(diǎn)的我們把具有上述特點(diǎn)的函數(shù)稱為減函數(shù),那么怎樣定函數(shù)稱為減函數(shù),那么怎樣定義義“函數(shù)函數(shù) 在區(qū)間在區(qū)間D D上是減上是減函數(shù)函數(shù)”?2
6、()f xxyox1x2( )yf x1()f x( )f x12,x x1x2x1( )f x2()f x)(xf對(duì)于對(duì)于函數(shù)函數(shù)定義域定義域I I內(nèi)某個(gè)區(qū)間內(nèi)某個(gè)區(qū)間D D上的任意兩個(gè)自變量上的任意兩個(gè)自變量 的值的值,若當(dāng),若當(dāng) , ,則稱函數(shù)則稱函數(shù) 在區(qū)間在區(qū)間D D上是減函數(shù)上是減函數(shù). . ( )f x12()()fxfx思考思考3:3:對(duì)于對(duì)于函數(shù)函數(shù)定義域定義域I I內(nèi)某個(gè)區(qū)間內(nèi)某個(gè)區(qū)間D D上的任意兩上的任意兩個(gè)自變量個(gè)自變量 的值的值,若當(dāng),若當(dāng) 時(shí),都有時(shí),都有 , ,則函數(shù)則函數(shù) 在區(qū)間在區(qū)間D D上是增函數(shù)還是上是增函數(shù)還是減函數(shù)?減函數(shù)? 12,x x12xx2(
7、 )(1)f xx( )f x( )f x思考思考4 4:如果函數(shù)如果函數(shù)y=f(xy=f(x) )在區(qū)間在區(qū)間D D上是增函上是增函數(shù)或減函數(shù),則稱函數(shù)數(shù)或減函數(shù),則稱函數(shù) 在這一區(qū)間具有在這一區(qū)間具有(嚴(yán)格的)(嚴(yán)格的)單調(diào)性單調(diào)性,區(qū)間,區(qū)間D D叫做函數(shù)叫做函數(shù) 的的單調(diào)區(qū)間單調(diào)區(qū)間. .那么二次函數(shù)在那么二次函數(shù)在R R上具有單調(diào)性嗎?上具有單調(diào)性嗎?函數(shù)函數(shù) 的單調(diào)區(qū)間如何?的單調(diào)區(qū)間如何?理論遷移理論遷移- -5 5- -3 31 13 36o ox xy y( )yf x( )yf x例例1 如圖是定義在閉區(qū)間如圖是定義在閉區(qū)間 -5-5,66上的函數(shù)上的函數(shù) 的圖象,根據(jù)圖象
8、說出的圖象,根據(jù)圖象說出 的單調(diào)區(qū)間,以的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,及在每一單調(diào)區(qū)間上,函數(shù)函數(shù) 是增函數(shù)還是增函數(shù)還是減函數(shù)是減函數(shù). ( )yf x(0,)1( )xfxx 例例3 3 試確定函數(shù)試確定函數(shù) 在區(qū)間在區(qū)間上的單調(diào)性上的單調(diào)性. ()kPkV為正常數(shù) 例例2 2 物理學(xué)中的玻意耳定律物理學(xué)中的玻意耳定律 告訴我們,對(duì)于一定量的氣體,當(dāng)其體積告訴我們,對(duì)于一定量的氣體,當(dāng)其體積V V 減小時(shí),壓強(qiáng)減小時(shí),壓強(qiáng)p p將增大將增大. . 試用函數(shù)的單調(diào)性試用函數(shù)的單調(diào)性 證明證明. . 小小 結(jié)結(jié)利用定義確定或證明函數(shù)利用定義確定或證明函數(shù)f(xf(x) )在給定的在給定的 區(qū)間區(qū)間D D上的單調(diào)性的一般步驟:上的單調(diào)性的一般步驟: 1.1.取數(shù)取數(shù): :任取任取x x1 1,x x2 2DD,且,且x x1 1x x2 2; 2.2.作差作差: :f(xf(x1 1) )f(xf(x2 2) ); 3.3.變形變形: :通常是因式分解和配方通常是因式分解和配方; ; 4.4.定號(hào)定號(hào): :
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 到家購房合同范本
- 利用資源合同范本
- 中外合作合同范本
- Unit 1 Food matters Reading 閱讀教學(xué)設(shè)計(jì)-2023-2024學(xué)年高中英語譯林版(2020)選擇性必修第一冊(cè)
- 與景區(qū)合作合同范本
- 2024年招銀網(wǎng)絡(luò)科技社會(huì)招聘筆試真題
- 公司食堂承包合同范本
- zuixing墻繪合同范本
- 會(huì)展物料出售合同范本
- 代辦入戶裝修合同范本
- 西方經(jīng)濟(jì)學(xué)(第二版)完整整套教學(xué)課件
- 振動(dòng)振動(dòng)測試基礎(chǔ)知識(shí)培訓(xùn)課件
- 《云南瀾滄鉛礦有限公司勐濱煤礦采礦權(quán)價(jià)款退還計(jì)算說明》
- sbl-ep16高低壓開關(guān)柜培訓(xùn)中法文kyn6140.5安裝使用說明書
- GB/T 9113.1-2000平面、突面整體鋼制管法蘭
- GB/T 8947-1998復(fù)合塑料編織袋
- PALL 頗爾過濾器 -乙烯系統(tǒng)培訓(xùn)
- 2021年湖北師范學(xué)院專升本C語言程序設(shè)計(jì)試卷
- CB/T 3136-1995船體建造精度標(biāo)準(zhǔn)
- 疫苗冰箱溫度記錄表
- 全科醫(yī)療服務(wù)模式及服務(wù)內(nèi)容課件
評(píng)論
0/150
提交評(píng)論