高考數(shù)學(xué)(文數(shù))二輪復(fù)習(xí)小題標(biāo)準(zhǔn)練習(xí)卷09(教師版)_第1頁
高考數(shù)學(xué)(文數(shù))二輪復(fù)習(xí)小題標(biāo)準(zhǔn)練習(xí)卷09(教師版)_第2頁
高考數(shù)學(xué)(文數(shù))二輪復(fù)習(xí)小題標(biāo)準(zhǔn)練習(xí)卷09(教師版)_第3頁
高考數(shù)學(xué)(文數(shù))二輪復(fù)習(xí)小題標(biāo)準(zhǔn)練習(xí)卷09(教師版)_第4頁
高考數(shù)學(xué)(文數(shù))二輪復(fù)習(xí)小題標(biāo)準(zhǔn)練習(xí)卷09(教師版)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、小題標(biāo)準(zhǔn)練(九)(40分鐘80分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.設(shè)復(fù)數(shù)=a+bi(a,bR,i為虛數(shù)單位),則a+b=()A.1B.2C.-1D.-2【解析】選A.i-21+i=(i-2)·(1-i)(1+i)·(1-i)=,故a=-12,b=32,所以a+b=1.2.若集合A=x|2x>1,集合B=x|ln x>0,則“xA”是“xB”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【解析】選B. 集合A=x|2x>1=x|x>0,集合B=x

2、|ln x>0=x|x>1,則BA,即“xA”是“xB”的必要不充分條件.3.設(shè)a=log23,b=,c=3-43,則()A.b<a<cB.c<a<bC.c<b<aD.a<c<b【解析】選B.因為2>a=log23>1,b=>2,c=3-43<1,所以c<a<b.4.函數(shù)f(x)=cos 2x+2sin x的最小值與最大值的和等于()A.-2B.0C.-32D.-12【解析】選C.因為f(x)=cos 2x+2sin x=-2sin2x+2sin x+1,令t=sin x,t-1,1,則y=-2t2

3、+2t+1,t-1,1,當(dāng)t=時,y取最大值,最大值為32;當(dāng)t=-1時,y取最小值,最小值為-3,所以最小值與最大值的和為-32.5.某初級中學(xué)有學(xué)生270人,其中七年級108人,八、九年級各81人,現(xiàn)要利用抽樣方法抽取10人參加某項調(diào)查,考慮選用簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機(jī)抽樣和分層抽樣時,將學(xué)生按七、八、九年級依次統(tǒng)一編號為1,2,270;使用系統(tǒng)抽樣時,將學(xué)生統(tǒng)一隨機(jī)編號為1,2,270,并將整個編號依次分為10段.如果抽得號碼有下列四種情況:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,

4、190,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270;關(guān)于上述樣本的下列結(jié)論中,正確的是()A.、都不能為系統(tǒng)抽樣B.、都不能為分層抽樣C.、都可能為系統(tǒng)抽樣D.、都可能為分層抽樣【解析】選D.對于系統(tǒng)抽樣,應(yīng)在127,2854,5581,82108,109135,136162,163189,190216,217243,244270中各抽取1個號;對于分層抽樣,應(yīng)在1108中抽取4個號,109189中抽取3個號,190270中抽取3個號.6.函數(shù)f(x)=cos x(-x且x0)

5、的圖象可能為()【解析】選D.因為f(x)=cos x,所以f(-x)=-f(x),所以f(x)為奇函數(shù),排除A,B;當(dāng)x=時,f(x)<0,排除C.7.設(shè)>0,函數(shù)y=sinx+3-1的圖象向左平移個單位后與原圖象重合,則的最小值是()A.23B.43C.32D.3【解析】選D.因為圖象向左平移個單位后與原圖象重合,所以是一個周期的整數(shù)倍.所以=T,3,所以最小是3.8.設(shè)雙曲線x2a2-y2b2=1(a>0,b>0)的一個焦點為F,虛軸的一個端點為B,線段BF與雙曲線的一條漸近線交于點A,若=2,則雙曲線的離心率為()A.6B.4C.3D.2【解析】選D.設(shè)點F(c

6、,0),B(0,b),由=2,得-=2(-),即=13(+2),所以點A,因為點A在漸近線y=bax上,則2b3=ba·c3,即e=2.9.已知a與b為兩個不共線的單位向量,k為實數(shù),若向量a+b與ka-b垂直,則k=()A.1B.3C.2D.【解析】選A.因為a與b是不共線的單位向量,所以|a|=|b|=1.又ka-b與a+b垂直,所以(a+b)·(ka-b)=0,即ka2+ka·b-a·b-b2=0.所以k-1+ka·b-a·b=0,即k-1+kcos -cos =0(為a與b的夾角).所以(k-1)(1+cos )=0,又a與b

7、不共線,所以cos -1,所以k=1.10.設(shè)x,y滿足約束條件則z=|x-3y|的最大值為()A.1B.3C.5D.6【解析】選C.方法一:作出可行域如圖中陰影部分所示,記z1=x-3y,則y=x-z13,由圖可知當(dāng)直線z1=x-3y過點B,C時z1分別取得最大值3和最小值-5.所以z=|x-3y|的最大值為5.方法二:z=·,d=表示點(x,y)到直線x-3y=0的距離,又B(3,0)到直線x-3y=0的距離為310,C(1,2)到直線x-3y=0的距離為510.所以z的最大值為×=5.11.已知函數(shù)f(x)=與g(x)=x3+t,若f(x)與g(x)的交點在直線y=x

8、的兩側(cè),則實數(shù)t的取值范圍是()A.(-6,0B.(-6,6)C.(4,+)D.(-4,4)【解析】選B.根據(jù)題意可得函數(shù)圖象,g(x)在點A(2,2)處的取值大于2,在點B(-2,-2)處的取值小于-2,可得g(2)=23+t =8+t>2,g(-2)=(-2)3+t=-8+t<-2,解得t(-6,6).12.F1,F2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且F1PF2=3,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為()A.433B.233C.3 D.2【解析】選A.方法一:設(shè)|PF1|=r1,|PF2|=r2(r1>r2),|F1F2|=2c,橢圓長半軸長為a1

9、,雙曲線實半軸長為a2,橢圓、雙曲線的離心率分別為e1,e2,由(2c)2=+-2r1r2cos,得4c2=+-r1r2.由 得r1=a1+a2,r2=a1-a2, 所以1e1+1e2=,令m=r12c2=4r12r12+r22-r1r2=,當(dāng)r2r1=12時,mmax=,所以r1cmax=433,即1e1+1e2的最大值為433.方法二:假定焦點在x軸上,點P在第一象限,F1,F2分別為左、右焦點.設(shè)橢圓的方程為x2a2+y2b2=1(a>b>0),雙曲線的方程為-y2n2=1(m>0,n>0),它們的離心率分別為e1,e2,則|PF1|=a+m,|PF2|=a-m,

10、在PF1F2中,4c2=(a+m)2+(a-m)2-2(a+m)(a-m)cosa2+3m2=4c2ac2+3mc2=4,則ac2+3mc21+131e1+1e2=ac+mc433,當(dāng)且僅當(dāng)a=3m時,等號成立.二、填空題(本大題共4小題,每小題5分,共20分.請把正確答案填在題中橫線上)13.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為_. 【解析】第一次循環(huán),x=2×3+1=7,n=2;第二次循環(huán),x=2×7+1=15,n=3;第三次循環(huán),x=2×15+1=31,n=4,程序結(jié)束,故輸出x=31.答案:3114.函數(shù)y=logax+1(

11、a>0且a1)的圖象恒過定點A,若點A在直線xm+yn-4 =0(m>0,n>0)上,則1m+1n=_;m+n的最小值為_. 【解析】由條件知點A的坐標(biāo)為(1,1),又點A在直線+yn-4=0(m>0,n>0)上,所以1m+1n=4,所以m+n=141m+1n(m+n)=142+nm+mn=1,當(dāng)且僅當(dāng)nm=mn,即m=n=12時等號成立,所以m+n的最小值為1.答案:4115.已知橢圓x24+y23=1的左焦點F,直線x=m與橢圓相交于點A,B,當(dāng)FAB的周長最大時,FAB的面積是_. 【解析】不妨設(shè)A(2cos ,3sin ),(0,),則

12、FAB的周長為2(|AF|+3sin )=2(2+cos +3sin )=4+4sin(+6).當(dāng)=3,即A(1,32)時,FAB的周長最大.所以FAB的面積為S=×2×3=3.答案:316.如圖,VA平面ABC,ABC的外接圓是以邊AB的中點為圓心的圓,點M,N,P分別為棱VA,VC,VB的中點,則下列結(jié)論正確的有_.(把正確結(jié)論的序號都填上) MN平面ABC;OC平面VAC;MN與BC所成的角為60°MNOP;平面VAC平面VBC.【解析】對于,因為點M,N分別為棱VA,VC的中點,所以MNAC,又MN平面ABC,AC平面ABC,所以MN平面ABC,所以正確;對于,假設(shè)OC平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論