高數(shù)精選教學(xué)大綱_第1頁
高數(shù)精選教學(xué)大綱_第2頁
高數(shù)精選教學(xué)大綱_第3頁
高數(shù)精選教學(xué)大綱_第4頁
高數(shù)精選教學(xué)大綱_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高等數(shù)學(xué)精選課程教學(xué)大綱(108學(xué)時,6學(xué)分)、課程的性質(zhì)、目的和任務(wù) 高等數(shù)學(xué)精選是理科(非數(shù)學(xué))本科專業(yè)學(xué)生的一門必修的重要基礎(chǔ)理論課,它是為培養(yǎng)我國社會主義現(xiàn)代化建設(shè)所需要的高質(zhì)量專門人才服務(wù)的。通過本課程的學(xué)習(xí),要使學(xué)生獲得:微積分、空間解析幾何、微分方程、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等方面的基本概念、基本理論和基本運(yùn)算技能,為學(xué)習(xí)后繼課程和進(jìn)一步獲取數(shù)學(xué)知識奠定必要的數(shù)學(xué)基礎(chǔ)。在傳授知識的同時,要通過各個教學(xué)環(huán)節(jié)逐步培養(yǎng)學(xué)生具有抽象思維能力、邏輯推理能力、空間想象能力、運(yùn)算能力和自學(xué)能力,還要特別注意培養(yǎng)學(xué)生具有綜合運(yùn)用所學(xué)知識去分析問題和解決問題的能力。、總學(xué)時與學(xué)分本課程的安排二學(xué)

2、期授課,分為高等數(shù)學(xué)精選高等數(shù)學(xué)精選,總學(xué)時為72+36,學(xué)分為4+2。、課程教學(xué)基本要求及基本內(nèi)容說明:教學(xué)要求較高的內(nèi)容用“理解”、“掌握”、“熟悉”等詞表述,要求較低的內(nèi)容用“了解”、“會”等詞表述。微積分部分一、函數(shù)、極限、連續(xù)1理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立應(yīng)用問題中的函數(shù)關(guān)系.2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系6掌握極限的性質(zhì)及四則運(yùn)算法則.7掌握極限存在的兩個準(zhǔn)則,并

3、會利用它們求極限,掌握利用兩個重要極限求極限的方法8理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價(jià)無窮小量求極限9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì)二、一元函數(shù)微分學(xué)1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系1 / 102掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)

4、公式了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分3了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù)4會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).5理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西(Cauchy)中值定理6掌握用洛必達(dá)法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應(yīng)用8會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形9了解曲率和曲率半徑的概念,會計(jì)算曲率和曲率

5、半徑三、一元函數(shù)積分學(xué)1理解原函數(shù)概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3會求有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的積分4理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式5了解廣義反常積分的概念,會計(jì)算廣義反常積分6掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心 等)及函數(shù)的平均值等四、向量代數(shù)和空間解析幾何1.理解空間直角坐標(biāo)系,理解向量的概念及其表示.2.掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積

6、、混合積),了解兩個向量垂直、平行的條件.3.理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法.4.掌握平面方程和直線方程及其求法.5會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題.6會求點(diǎn)到直線以及點(diǎn)到平面的距離.7.了解曲面方程和空間曲線方程的概念.8.了解常用二次曲面的方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程.9.了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標(biāo)平面上的投影,并會求該投影曲線的方程.五、多元函數(shù)微分學(xué)1理解多元函數(shù)的概念,理解二元函數(shù)的

7、幾何意義.2了解二元函數(shù)的極限與連續(xù)性的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì).3理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.4理解方向?qū)?shù)與梯度的概念,并掌握其計(jì)算方法.5掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法.6了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù).7了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.8了解二元函數(shù)的二階泰勒公式.9理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小

8、值,并會解決一些簡單的應(yīng)用問題.六、多元函數(shù)積分學(xué)1理解二重積分、三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理.2掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo)),會計(jì)算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)).3理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系.4掌握計(jì)算兩類曲線積分的方法.5掌握格林公式并會運(yùn)用平面曲線積分與路徑元關(guān)的條件,會求二元函數(shù)全微分的原函數(shù).6了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計(jì)算兩類曲面積分的方法,掌握用高斯公式計(jì)算曲面積分的方法,并會用斯托克斯公式計(jì)算曲線積分.7了解散度與旋度的概念,并會計(jì)算.8會用重積分、曲線積分

9、及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、轉(zhuǎn)動慣量、引力、功及流量等).七、無窮級數(shù)1理解常數(shù)項(xiàng)級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件.2掌握幾何級數(shù)與p級數(shù)的收斂與發(fā)散的條件.3掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法.4掌握交錯級數(shù)的萊布尼茨判別法.5. 了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系.6了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念.7理解冪級數(shù)的收斂半徑的概念、并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.8了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐

10、項(xiàng)求導(dǎo)和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和.9了解函數(shù)展開為泰勒級數(shù)的充分必要條件.10掌握、sinx、cosx、ln(1+x)和(1+x)的麥克勞林展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù).11了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在 上的函數(shù)展開為傅里葉級數(shù),會將定義在 上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和的表達(dá)式.八、常微分方程1了解微分方程及其階、解、通解、初始條件和特解等概念.(調(diào)整前知識點(diǎn):了解微分方程及其解、階、通解、初始條件和特解等概念.)2掌握變量可分離的微分方程及一階線性微分方程的解法3會解齊次微分

11、方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程4會用降階法解下列方程: 5理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)6掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.7會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程8會解歐拉方程9會用微分方程解決一些簡單的應(yīng)用問題線性代數(shù)部分九、行列式1了解行列式的概念,掌握行列式的性質(zhì)2會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式十、矩陣1理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣,以及它們的性質(zhì)2掌握矩陣的線性運(yùn)算、乘

12、法、轉(zhuǎn)置,以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).3理解逆矩陣的概念,掌握逆矩陣的性質(zhì),以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣4理解矩陣的初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法5了解分塊矩陣及其運(yùn)算十一、向量1理解n維向量、向量的線性組合與線性表示的概念2理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法3理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩4理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的

13、關(guān)系(調(diào)整前知識點(diǎn):了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的關(guān)系.)5了解n維向量空間、子空間、基底、維數(shù)、坐標(biāo)等概念6了解基變換和坐標(biāo)變換公式,會求過渡矩陣7了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法8了解規(guī)范正交基、正交矩陣的概念,以及它們的性質(zhì)十二、線性方程組l會用克萊姆法則2理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線性方程組的基礎(chǔ)解系、通解及解空間的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.4理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念5掌握用初等行變換求解線性方程組的方法十三、矩陣的特征值和

14、特征向量1理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量.2理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.3掌握實(shí)對稱矩陣的特征值和特征向量的性質(zhì)十四、二次型1掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變化和合同矩陣的概念 了解二次型的標(biāo)準(zhǔn)形、規(guī)范形的概念以及慣性定理2掌握用正交變換化二次型為標(biāo)準(zhǔn)形的方法,會用配方法化二次型為標(biāo)準(zhǔn)形3理解正定二次型、正定矩陣的概念,并掌握其判別法。概率論與數(shù)理統(tǒng)計(jì)部分十五、隨機(jī)事件和概率1了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系與運(yùn)算2理解概率、條件概率的

15、概念,掌握概率的基本性質(zhì),會計(jì)算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式3理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計(jì)算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計(jì)算有關(guān)事件概率的方法十六、隨機(jī)變量及其分布1理解隨機(jī)變量的概念理解分布函數(shù) 的概念及性質(zhì)會計(jì)算與隨機(jī)變量相聯(lián)系的事件的概率2理解離散型隨機(jī)變量及其概率分布的概念,掌握01分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松(Poisson)分布 及其應(yīng)用3.了解泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項(xiàng)分布.4理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布 、指數(shù)

16、分布及其應(yīng)用,其中參數(shù)為 的指數(shù)分布 的概率密度為5會求隨機(jī)變量函數(shù)的分布十七、多維隨機(jī)變量及其分布1理解多維隨機(jī)變量的概念,理解多維隨機(jī)變量的分布的概念和性質(zhì). 理解二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布;理解二維連續(xù)型隨機(jī)變量的概率密度、邊緣密度和條件密度會求與二維隨機(jī)變量相關(guān)事件的概率2理解隨機(jī)變量的獨(dú)立性及不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件.3掌握二維均勻分布,了解二維正態(tài)分布 的概率密度,理解其中參數(shù)的概率意義4會求兩個隨機(jī)變量簡單函數(shù)的分布,會求多個相互獨(dú)立隨機(jī)變量簡單函數(shù)的分布. 十八、隨機(jī)變量的數(shù)字特征1理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差

17、、相關(guān)系數(shù))的概念,會運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征2.會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望.十九、大數(shù)定律和中心極限定理1了解切比雪夫不等式2了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律)3了解棣莫弗-拉普拉斯定理(二項(xiàng)分布以正態(tài)分布為極限分布)和列維-林德伯格定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理)二十、數(shù)理統(tǒng)計(jì)的基本概念1、理解總體、簡單隨機(jī)樣本、統(tǒng)計(jì)量、樣本均值、樣本方差及樣本矩的概念。2、了解產(chǎn)生分布變量、 變量和 變量的典型模式;理解標(biāo)準(zhǔn)正態(tài)分布、分布的分位數(shù),會查相應(yīng)的數(shù)值表。二十一、參數(shù)估計(jì)1、理解參數(shù)的點(diǎn)估計(jì)、估計(jì)量與估計(jì)值

18、的概念;了解估計(jì)量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗(yàn)證估計(jì)量的無偏性。2、掌握矩估計(jì)法(一階、二階矩)和最大似然估計(jì)法。3、掌握建立未知參數(shù)的(雙側(cè)和單側(cè))置信區(qū)間的一般方法;掌握正態(tài)總體均值、方差、標(biāo)準(zhǔn)差、矩以及與其相聯(lián)系的數(shù)字特征的置信區(qū)間的求法。4、掌握兩個正態(tài)總體的均值差和方差比及相關(guān)數(shù)字特征的置信區(qū)間的求法。二十二、假設(shè)檢驗(yàn)1、理解“假設(shè)”的概念和基本類型;理解顯著性檢驗(yàn)的基本思想,掌握假設(shè)檢驗(yàn)的基本步驟;會構(gòu)造簡單假設(shè)的顯著性檢驗(yàn)。2、理解假設(shè)檢驗(yàn)可能產(chǎn)生的兩類錯誤,對于較簡單的情形,會計(jì)算兩類錯誤的概率。3、掌握單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗(yàn)。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論