第一部分第一章章末小結(jié)知識整合與階段檢測_第1頁
第一部分第一章章末小結(jié)知識整合與階段檢測_第2頁
第一部分第一章章末小結(jié)知識整合與階段檢測_第3頁
第一部分第一章章末小結(jié)知識整合與階段檢測_第4頁
第一部分第一章章末小結(jié)知識整合與階段檢測_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第一章 立體幾何初步章末章末小結(jié)小結(jié) 知識知識整合整合與階與階段檢段檢測測階段質(zhì)量檢測核心要點歸納 一、簡單幾何體一、簡單幾何體 1簡單旋轉(zhuǎn)體由封閉的旋轉(zhuǎn)面圍成的幾何體叫做簡單旋轉(zhuǎn)體由封閉的旋轉(zhuǎn)面圍成的幾何體叫做旋轉(zhuǎn)體常見的旋轉(zhuǎn)體有球、圓柱、圓錐和圓臺旋轉(zhuǎn)體常見的旋轉(zhuǎn)體有球、圓柱、圓錐和圓臺 2分別以半圓的直徑、矩形的一邊、直角三角形的分別以半圓的直徑、矩形的一邊、直角三角形的一條直角邊、直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)一條直角邊、直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體分別叫做軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體分別叫做球、圓柱、圓錐、圓臺

2、球、圓柱、圓錐、圓臺 3簡單多面體由若干個平面多邊形圍成的幾何簡單多面體由若干個平面多邊形圍成的幾何體叫做多面體常見的多面體有棱柱、棱錐和棱臺體叫做多面體常見的多面體有棱柱、棱錐和棱臺 4解決多面體問題,首先要理解它們的結(jié)構(gòu)特征:解決多面體問題,首先要理解它們的結(jié)構(gòu)特征:如直棱柱、正棱錐和正棱臺;解決旋轉(zhuǎn)體問題,要理解如直棱柱、正棱錐和正棱臺;解決旋轉(zhuǎn)體問題,要理解它們的形成過程及基本概念它們的形成過程及基本概念 二、直觀圖二、直觀圖 1畫直觀圖的基本方法是斜二測畫法畫直觀圖的基本方法是斜二測畫法 2斜二測畫法的基本規(guī)則是斜二測畫法的基本規(guī)則是 (1)在已知圖形中取互相垂直的在已知圖形中取互相

3、垂直的x軸和軸和y軸,兩軸相交軸,兩軸相交于點于點O.畫直觀圖時,把它們畫成對應(yīng)的畫直觀圖時,把它們畫成對應(yīng)的x軸與軸與y軸,兩軸,兩軸交于點軸交于點O,且使,且使xOy45,它們確定的平面表,它們確定的平面表示水平面示水平面 (2)已知圖形中平行于已知圖形中平行于x軸或軸或y軸的線段,在直觀圖軸的線段,在直觀圖中分別畫成平行于中分別畫成平行于x軸和軸和y軸的線段軸的線段 (3)已知圖形中平行于已知圖形中平行于x軸的線段,在直觀圖中保持軸的線段,在直觀圖中保持原長度不變,平行于原長度不變,平行于y軸的線段,長度為原來的一半軸的線段,長度為原來的一半三、三視圖三、三視圖1三視圖包括:主視圖、左視

4、圖和俯視圖三視圖包括:主視圖、左視圖和俯視圖2繪制三視圖時要注意繪制三視圖時要注意(1)主俯長對正、主左高平齊、俯左寬相等主俯長對正、主左高平齊、俯左寬相等(2)虛實線,要分清,前后對正記心中虛實線,要分清,前后對正記心中 四、空間基本關(guān)系和公理四、空間基本關(guān)系和公理 1空間基本關(guān)系空間基本關(guān)系 (1)直線與直線的位置關(guān)系有:相交、平行和異面直線與直線的位置關(guān)系有:相交、平行和異面 (2)直線與平面的位置關(guān)系有:在平面內(nèi)、與平面平直線與平面的位置關(guān)系有:在平面內(nèi)、與平面平行和與平面相交行和與平面相交 (3)平面與平面的位置關(guān)系有:平行和相交平面與平面的位置關(guān)系有:平行和相交 2空間圖形的公理空

5、間圖形的公理 公理公理1如果一條直線上的兩點在一個平面內(nèi),那么如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi)這條直線上所有的點都在這個平面內(nèi)(即直線在平面內(nèi)即直線在平面內(nèi)) 公理公理2經(jīng)過不在同一條直線上的三點,有且只有一經(jīng)過不在同一條直線上的三點,有且只有一個平面?zhèn)€平面(即可以確定一個平面即可以確定一個平面) 公理公理3如果兩個不重合的平面有一個公共點,那么如果兩個不重合的平面有一個公共點,那么它們有且只有一條通過這個點的公共直線它們有且只有一條通過這個點的公共直線 公理公理4平行于同一條直線的兩條直線平行平行于同一條直線的兩條直線平行 3空間直線、平面的位置關(guān)系是研

6、究立體幾何的基空間直線、平面的位置關(guān)系是研究立體幾何的基礎(chǔ)應(yīng)從交點個數(shù)等方面理解,三個公理是立體幾何體系礎(chǔ)應(yīng)從交點個數(shù)等方面理解,三個公理是立體幾何體系的基石,是研究空間圖形問題、進行邏輯推理的基礎(chǔ)的基石,是研究空間圖形問題、進行邏輯推理的基礎(chǔ)五、平行關(guān)系五、平行關(guān)系1判定定理和性質(zhì)定理判定定理和性質(zhì)定理判定定理判定定理性質(zhì)定理性質(zhì)定理直線和平直線和平面平行面平行若平面外一條直線與此平若平面外一條直線與此平面內(nèi)的一條直線平行,則面內(nèi)的一條直線平行,則該直線與此平面平行該直線與此平面平行如果一條直線與一個平面如果一條直線與一個平面平行,那么過該直線的任平行,那么過該直線的任意一個平面與已知平面的

7、意一個平面與已知平面的交線與該直線平行交線與該直線平行平面與平平面與平面平行面平行如果一個平面內(nèi)有兩條相如果一個平面內(nèi)有兩條相交直線都平行于另一個平交直線都平行于另一個平面,那么這兩個平面平行面,那么這兩個平面平行如果兩個平行平面同時與如果兩個平行平面同時與第三個平面相交,那么它第三個平面相交,那么它們的交線平行們的交線平行 2平行關(guān)系是空間重要的位置關(guān)系直線與直線平行關(guān)系是空間重要的位置關(guān)系直線與直線平行、直線與平面平行、平面與平面平行可以相互轉(zhuǎn)化,平行、直線與平面平行、平面與平面平行可以相互轉(zhuǎn)化,這種轉(zhuǎn)化是實現(xiàn)平行推理和證明的關(guān)鍵這種轉(zhuǎn)化是實現(xiàn)平行推理和證明的關(guān)鍵 平行關(guān)系的轉(zhuǎn)化是:平行關(guān)

8、系的轉(zhuǎn)化是:判定定理判定定理性質(zhì)定理性質(zhì)定理直線和平直線和平面垂直面垂直如果一條直線和一個平面內(nèi)如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那的兩條相交直線都垂直,那么該直線與此平面垂直么該直線與此平面垂直如果兩條直線同垂直于如果兩條直線同垂直于一個平面,那么這兩條一個平面,那么這兩條直線平行直線平行平面和平平面和平面垂直面垂直如果一個平面經(jīng)過另一個平如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個面的一條垂線,那么這兩個平面互相垂直平面互相垂直如果兩個平面互相垂直,如果兩個平面互相垂直,那么在一個平面內(nèi)垂直那么在一個平面內(nèi)垂直于它們的交線的直線垂于它們的交線的直線垂直于另一個平面直于另一個平面六、垂直關(guān)系六、垂直關(guān)系1判定定理和性質(zhì)定理判定定理和性質(zhì)定理 2垂直關(guān)系是空間另一種重要的位置關(guān)系直線垂直關(guān)系是空間另一種重要的位置關(guān)系直線與直線垂直、直線與平面垂直、平面與平面垂直可以相與直線垂直、直線與平面垂直、平面與平面垂直可以相互轉(zhuǎn)化,這種轉(zhuǎn)化是實現(xiàn)垂直推理和證明的關(guān)鍵互轉(zhuǎn)化,這種轉(zhuǎn)化是實現(xiàn)垂直推理和證明的關(guān)鍵垂直關(guān)系的轉(zhuǎn)化為:垂直關(guān)系的轉(zhuǎn)化為:七、簡單幾何體的面積和體積七、簡單幾何體的面積和體積1側(cè)面積公式側(cè)面積公式圓柱的側(cè)面積圓柱的側(cè)面積S圓柱側(cè)圓柱側(cè)2rl圓錐的側(cè)面積圓錐的側(cè)面積S圓錐側(cè)圓錐側(cè)rl圓臺的側(cè)面積圓臺的側(cè)面積S圓臺側(cè)圓臺側(cè)(r1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論