版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、 在化簡、求值、證明恒等式(不等式)、解方程(不等式)的過程中,常需將代數(shù)式變形恒等變形,沒有統(tǒng)一的方法,需要根據(jù)具體問題,采用不同的變形技巧,使證明過程盡量簡潔,一般可以把恒等變形分為兩類:一類是無附加條件的,需要在式子默認(rèn)的范圍中運算;另一類 是有附加條件的,要善于利用條件,簡化運算恒等式變形的基本思路:由繁到簡(即由等式較繁的一邊向另一邊推導(dǎo))和相向趨進(即將等式兩邊同時轉(zhuǎn)化為同一形式) 恒等式證明的一般方法: 1單向證明,即從左邊證到右邊或從右邊證到左邊,其原則是化繁為簡,變形的過程中要不斷注意結(jié)論的形式,調(diào)整證明的方向 2雙向證明,即把左、右兩邊分別化簡,使它們都等于第三個代數(shù)式3運
2、用“比差法”或“比商法”,證明“左邊一右邊=0"或(右邊O)”,可得左邊d右邊 4運用分析法,由結(jié)論出發(fā),執(zhí)果索因,探求思路,本節(jié)結(jié)合實例對代數(shù)式的基本變形(如配方、因式分解、換元、設(shè)參、拆項與逐步合并等)方法作初步介紹,題1 求證 :對同底數(shù)冪進行合并整理,解方法一:左邊=右邊,方法二:左邊右邊故左邊=右邊方法一中受右邊的提示,對左邊式子進行合并時,以與為主元合并,迅速便捷讀一題,練3題,練就解題高手1-1已知求證:1-2已知證明:1-3證明:題2 經(jīng)研究,這個問題的一般結(jié)論是其中,n為整數(shù),現(xiàn)在我們來研究一個類似的問題: 觀察下面三個特殊的等式:將這三個式子兩邊相加(累加),可得
3、 讀完這段材料,請您思考回答:=(只寫出結(jié)果,不必寫出中間的過程)分析此題可得到如下信息:解(2)由類比思想知則在解題時要善于利用類比推理思想,理解并記住一些常用的一般性結(jié)論,如讀一題,練3題,練就解題高手2-1已知n是正整數(shù),是反比例函數(shù)圖象上的一列點,其中記若則的值是2-2我們把分子為1的分?jǐn)?shù)叫做單位分?jǐn)?shù),如任何一個單位分?jǐn)?shù)都可以寫成兩個不同的單位分?jǐn)?shù)的和,如(1)根據(jù)對上述式子的觀察,你會發(fā)現(xiàn)請寫出所表示的數(shù);(2)進一步思考,單位分?jǐn)?shù)(n是不小于2的正整數(shù))=請寫出所表示的代數(shù)式,并加以驗證2-3已知都是正數(shù),試比較M與N的大小題3 已知互不相等,求證本題可設(shè)然后求解解設(shè)則故以上三式相
4、加,得即本題運用了連比等式設(shè)參數(shù)k的方法,這種引入?yún)?shù)的方法是恒等式證明中的常用技巧,讀 一題,練1題,決出能力高下3-1已知則題4 證明 本題看似復(fù)雜,但是仔細(xì)分析各項特征,可嘗試使用多變量換元法解令則原待證恒等式轉(zhuǎn)化為聯(lián)想到公式由+,得故即原式得證換元法的使用可以使題目條件更趨簡潔,更易把握題目特點讀一題,練3題,沖刺奧數(shù)金牌4-1試用x+l的各項冪表示4-2已知且求證:4-3解方程:題5 設(shè)x,y,z互為不相等的非零實數(shù),且求證:由于結(jié)論為的形式,可以從題設(shè) 式中導(dǎo)出x,y,z乘積的形式xy,yz,zx解由變形可得則同理可得由××,得本題中x,y,z具有輪換對稱的特點,也可從二元情形中得到啟示:即令x,y為互不相等的非零實數(shù),且易推出故有所以三元與二元情形類似讀一題,練3題,沖刺奧數(shù)金牌5-1若實數(shù)x,y,z滿足則xyz=5-2已知求的值5-3已知實數(shù)a,b,c,d互不相等,且試求x的值,題6 已知 由待證式知要從題設(shè)條件中消去y 解由已知,得兩式相乘,得即所以故綜合考查條件結(jié)論,充分挖掘隱含信息,常會成為解題的關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國自立袋拉鏈數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國管殼熱交換器數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國電梯開關(guān)鎖數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國洗衣機安全防護罩?jǐn)?shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國無苯雙組份裝修鏡亮清漆數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國聲紋識別器數(shù)據(jù)監(jiān)測研究報告
- 2025年中國不銹鋼刀口角尺市場調(diào)查研究報告
- 滑坡災(zāi)害成災(zāi)模式研究
- 二零二四年度新型工業(yè)用地租賃合同范本3篇
- 2025年度個人房屋交易房地產(chǎn)經(jīng)紀(jì)服務(wù)合同范本2篇
- 五年級上冊寒假作業(yè)答案(人教版)
- 2025年山東浪潮集團限公司招聘25人高頻重點提升(共500題)附帶答案詳解
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 2025年江西省港口集團招聘筆試參考題庫含答案解析
- (2024年)中國傳統(tǒng)文化介紹課件
- 液化氣安全檢查及整改方案
- 《冠心病》課件(完整版)
- 2024年云網(wǎng)安全應(yīng)知應(yīng)會考試題庫
- 公園保潔服務(wù)投標(biāo)方案
- 光伏電站項目合作開發(fā)合同協(xié)議書三方版
- 2024年秋季新滬教版九年級上冊化學(xué)課件 第2章 空氣與水資源第1節(jié) 空氣的組成
評論
0/150
提交評論