版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、【中考熱點(diǎn)分析】 數(shù)形結(jié)合思想是數(shù)學(xué)中重要的思想方法,它根據(jù)數(shù)學(xué)問題中的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其數(shù)量關(guān)系,又揭示其幾何意義,使數(shù)量關(guān)系和幾何圖形巧妙的結(jié)合起來,并充分利用這種結(jié)合,探求解決問題的思路,使問題得以解決的思考方法。幾何圖形的形象直觀,便于理解;代數(shù)方法的一般性,解題過程的操作性強(qiáng),便于把握。【經(jīng)典考題講練】例1.(2015衢州)如圖,已知直線分別交x軸、y軸于點(diǎn)A、B,P是拋物線的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是例2.(2014廣州)已知平面直角坐標(biāo)系中兩定點(diǎn)A(-1,0),B(4,0),拋物線()過點(diǎn)A、B,頂點(diǎn)為
2、C點(diǎn)P(m,n)(n<0)為拋物線上一點(diǎn)(1)求拋物線的解析式與頂點(diǎn)C的坐標(biāo)(2)當(dāng)APB為鈍角時(shí),求m的取值范圍(3)若,當(dāng)APB為直角時(shí),將該拋物線向左或向右平移t()個(gè)單位,點(diǎn)P、C移動(dòng)后對應(yīng)的點(diǎn)分別記為、,是否存在t,使得首尾依次連接A、B、所構(gòu)成的多邊形的周長最短?若存在,求t值并說明拋物線平移的方向;若不存在,請說明理由解析:(1)待定系數(shù)法求解析式即可,求得解析式后轉(zhuǎn)換成頂點(diǎn)式即可(2)因?yàn)锳B為直徑,所以當(dāng)拋物線上的點(diǎn)P在C的內(nèi)部時(shí),滿足APB為鈍角,所以-1m0,或3m4(3)左右平移時(shí),使AD+DB最短即可,那么作出點(diǎn)C關(guān)于x軸對稱點(diǎn)的坐標(biāo)為C,得到直線PC的解析式,
3、然后把A點(diǎn)的坐標(biāo)代入即可答案:(1)解:依題意把的坐標(biāo)代入得: ;解得: 拋物線解析式為頂點(diǎn)橫坐標(biāo),將代入拋物線得(2)如圖,當(dāng)時(shí),設(shè),則過作直線軸, (注意用整體代入法)解得,當(dāng)在之間時(shí),或時(shí),為鈍角.(3)依題意,且設(shè)移動(dòng)(向右,向左)連接則又的長度不變四邊形周長最小,只需最小即可將沿軸向右平移5各單位到處沿軸對稱為當(dāng)且僅當(dāng)、B、三點(diǎn)共線時(shí),最小,且最小為,此時(shí),設(shè)過的直線為,代入即將代入,得:,解得:當(dāng),P、C向左移動(dòng)單位時(shí),此時(shí)四邊形ABPC周長最小。例3.(2012杭州)如圖,AE切O于點(diǎn)E,AT交O于點(diǎn)M,N,線段OE交AT于點(diǎn)C,OBAT于點(diǎn)B,已知EAT30°,(1)
4、求COB的度數(shù);(2)求O的半徑R;(3)點(diǎn)F在O上(是劣?。褽F5,把OBC經(jīng)過平移、旋轉(zhuǎn)和相似變換后,使它的兩個(gè)頂點(diǎn)分別與點(diǎn)E,F(xiàn)重合在EF的同一側(cè),這樣的三角形共有多少個(gè)?你能在其中找出另一個(gè)頂點(diǎn)在O上的三角形嗎?請?jiān)趫D中畫出這個(gè)三角形,并求出這個(gè)三角形與OBC的周長之比解:(1)AE切O于點(diǎn)E,OEAE,OBAT,在CAE和COB中,AECCBO90°,而BCOACE,COBA30°.(3分)圖(1)(2)在RtACE中,AE3,A30°,ECAE·tan30°3.如圖(1),連接OM,在RtMOB中,OMR,MB,OB.在RtCO
5、B中,COB30°,OC.OCECR,·3R整理得R218R1150,即(R23)(R5)0,R23(不符合題意,舍去),或R5,R5.(8分)(3)在EF的同一側(cè),滿足題意的三角形共有6個(gè),如圖(2)(3)(4),每個(gè)圖有2個(gè)滿足題意的三角形能找出另一個(gè)頂點(diǎn)也在O上的三角形,如圖(1),延長EO交O于D,連接DF,則DFE為符合條件 的三角形圖(2) 圖(3)圖(4)由題意得,DFEOBC.由(2)得,DE2R10,OC2,5.(14分)【解答策略提煉】解題策略,數(shù)形結(jié)合思想包含“以形助教”和“以數(shù)助形”兩個(gè)方面,即用數(shù)形結(jié)合思想解題可分兩類:一是依形判教,用形解決數(shù)的問
6、題,常見于借助數(shù)軸、函數(shù)圖像、幾何圖形來求解代數(shù)問題;二十就數(shù)論形,用數(shù)解決形的問題,常見于運(yùn)用恒等變形、建立方程(組)、面積轉(zhuǎn)換等求解幾何問題?!緦m?xiàng)達(dá)標(biāo)訓(xùn)練】1、 填空題1. 如圖所示,在梯形ABCD中,ADBC,ABC=90°,AD=AB=6,BC=14,點(diǎn)M是線段BC上一定點(diǎn),且MC=8,動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿CDAB的路線運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止,在點(diǎn)P的運(yùn)動(dòng)過程中,使PMC為等腰三角形的點(diǎn)P有( )個(gè)。2. 已知拋物線y=ax2-2ax-1+a(a>0)與直線x=2,x=3,y=1圍成的正方形有公共點(diǎn),則a的取值范圍是。3. 如圖,拋物線
7、y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(-1,0),點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)MC+MD的值最小時(shí),m的值是 24/41 。4. 拋物線y=ax2+bx+c(a0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),若ABC是直角三角形,則ac= .5.如圖,半徑為r1的圓內(nèi)切于半徑為r2的圓,切點(diǎn)為P,過圓心O1的直線與O2交于A、B,與O1交于C、D,已知AC:CD:DB=3:4:2,則=2、 解答題6. (1)如圖,四邊形ABCD中,BAD=120°,B=D=90°,在BC、CD上分別找一點(diǎn)M、N,使AMN周長最小時(shí),求AMN+ANM的度數(shù)。(2)
8、如圖,直線y=+b與雙曲線y=交于A、B兩點(diǎn),其橫坐標(biāo)分別為1和5,求不等式<+b的解集。7.如圖,AC為O的直徑,B是O外一點(diǎn),AB交O于E點(diǎn),過E點(diǎn)作O的切線,交BC于D點(diǎn),DE=DC,作EFAC于F點(diǎn),交AD于M點(diǎn)。(1)求證:BC是O的切線。(2)EM=FM.8.(2015鄂州)如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C拋物線y=ax2+bx+c的對稱軸是x=且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B(1)直接寫出點(diǎn)B的坐標(biāo);求拋物線解析式(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC求PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo)(3)拋
9、物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由【基礎(chǔ)重點(diǎn)輪動(dòng)】選擇題1. (-)-1+(-)0+(-2)2的值為 ( )A.2. 要使分式有意義,則x的取值范圍是 ( )A. x<1 >-13. 對于函數(shù),下列說法錯(cuò)誤的是 ( )A.它的圖象分布在一、三象限B.它的圖象既是軸對稱圖形又是中心對稱圖形C.當(dāng)x0時(shí),y的值隨x的增大而增大D.當(dāng)x0時(shí),y的值隨x的增大而減小4. 如圖,PA、PB是O的切線,切點(diǎn)是A、B,已知P=60°,OA=3,那么AOB所對弧的長度為( )。5. 拋
10、物線y=x2+bx+c(a0)圖像向右平移2個(gè)單位再向下平移3個(gè)單位,所得的圖像解析式為=x2-2x-3,則b,c的值為( )。A. b=2,c=2 B.b=2,c=0 C.b=-2,c=-1 D.b=-3,c=26. 如圖,ABC中,CDAB,垂足為D。下列條件中,不能證明ABC是直角三角形的是()A.A+B=90°B.AB2=AC2+BC2C.D.CD2=ADBD7.下列命題是真命題的是( )B有兩邊和一角對應(yīng)相等的兩個(gè)三角形全等C兩條對角線相等的平行四邊形是矩形D兩邊相等的平行四邊形是菱形8.如圖所示,正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn)。已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn)
11、,且使得ABC為等腰三角形,則C點(diǎn)的個(gè)數(shù)是( C )A6B7C8D9填空題9. 如圖,直線l1l2l3,點(diǎn)A、B、C分別在在直線l1、l2、l3上,若1=70°,2=50°,則ABC= 度。第9題圖 第10題圖 10.如圖某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則迎水坡面AB的長度是。11.某課外小組的同學(xué)們在社會(huì)實(shí)踐活動(dòng)中調(diào)查了20戶家庭某月的用電量,如下表所示: 用電量(度) 120140160180200戶數(shù)23672則這20戶家庭該月用電量的眾數(shù)和中位數(shù)分別是。12. 已知菱形ABCD的邊長是8,點(diǎn)E在直線AD上,若DE=3,連接BE與對角線AC
12、相交于點(diǎn)M,則SABM:SCBM的值為。第10講綜合性解答問題【中考熱點(diǎn)分析】代數(shù)型綜合題是指以代數(shù)知識為主的或以代數(shù)變形技巧為主的一類綜合題,涉及知識:主要包括方程、函數(shù)、不等式等內(nèi)容。解題策略:用到的數(shù)學(xué)思想方法有化歸思想、分類思想、數(shù)形結(jié)合思想以及代入法、待定系數(shù)法、配方法等。幾何型綜合題是指以幾何知識為主或者以幾何變換為主的一類綜合題。涉及知識:主要包括幾何的定義、公理、定理、幾何變換等內(nèi)容。解題策略:解決幾何型綜合題的關(guān)鍵是把代數(shù)知識與幾何圖形的性質(zhì)以及計(jì)算與證明有機(jī)融合起來,進(jìn)行分析、推理,從而達(dá)到解決問題的目的。代數(shù)和幾何型綜合題是指以代數(shù)知識與幾何知識綜合運(yùn)用的一類綜合題。涉及
13、知識:代數(shù)與幾何的重要知識點(diǎn)和多種數(shù)學(xué)思想方法。【經(jīng)典考題講練】例1.如圖,已知矩形OABC中,OA2,AB4,雙曲線(k0)與矩形兩邊AB、BC分別交于E、F。(1)若E是AB的中點(diǎn),求F點(diǎn)的坐標(biāo);例1題圖(2)若將BEF沿直線EF對折,B點(diǎn)落在x軸上的D點(diǎn),作EGOC,垂足為G,證明EGDDCF,并求k的值。例2.(2014十堰)已知拋物線C1:y=a(x+1)22的頂點(diǎn)為A,且經(jīng)過點(diǎn)B(2,1)(1)求A點(diǎn)的坐標(biāo)和拋物線C1的解析式.(2)如圖1,將拋物線C1向下平移2個(gè)單位后得到拋物線C2,且拋物線C2與直線AB相交于C,D兩點(diǎn),求SOAC:SOAD的值.(3)如圖2,若過P(4,0)
14、,Q(0,2)的直線為l,點(diǎn)E在(2)中拋物線C2對稱軸右側(cè)部分(含頂點(diǎn))運(yùn)動(dòng),直線m過點(diǎn)C和點(diǎn)E問:是否存在直線m,使直線l,m與x軸圍成的三角形和直線l,m與y軸圍成的三角形相似?若存在,求出直線m的解析式;若不存在,說明理由分析:(1)由拋物線的頂點(diǎn)式易得頂點(diǎn)A坐標(biāo),把點(diǎn)B的坐標(biāo)代入拋物線的解析式即可解決問題(2)根據(jù)平移法則求出拋物線C2的解析式,用待定系數(shù)法求出直線AB的解析式,再通過解方程組求出拋物線C2與直線AB的交點(diǎn)C、D的坐標(biāo),就可以求出SOAC:SOAD的值(3)設(shè)直線m與y軸交于點(diǎn)G,直線l,m與x軸圍成的三角形和直線l,m與y軸圍成的三角形形狀、位置隨著點(diǎn)G的變化而變化
15、,故需對點(diǎn)G的位置進(jìn)行討論,借助于相似三角形的判定與性質(zhì)、三角函數(shù)的增減性等知識求出符合條件的點(diǎn)G的坐標(biāo),從而求出相應(yīng)的直線m的解析式例3.(10分)(2015桂林)如圖,四邊形ABCD是O的內(nèi)接正方形,AB=4,PC、PD是O的兩條切線,C、D為切點(diǎn)(1)如圖1,求O的半徑;(2)如圖1,若點(diǎn)E是BC的中點(diǎn),連接PE,求PE的長度;(3)如圖2,若點(diǎn)M是BC邊上任意一點(diǎn)(不含B、C),以點(diǎn)M為直角頂點(diǎn),在BC的上方作AMN=90°,交直線CP于點(diǎn)N,求證:AM=MN分析:(1)利用切線的性質(zhì)以及正方形的判定與性質(zhì)得出O的半徑即可;(2)利用垂徑定理得出OEBC,OCE=45
16、6;,進(jìn)而利用勾股定理得出即可;(3)在AB上截取BF=BM,利用(1)中所求,得出ECP=135°,再利用全等三角形的判定與性質(zhì)得出即可【解答策略提煉】1、 代數(shù)綜合題是以代數(shù)知識及代數(shù)變形為主的綜合題。主要包括方程、函數(shù)、不等式等內(nèi)容。解題策略:用到的數(shù)學(xué)思想方法有化歸思想、分類思想、數(shù)形結(jié)合思想以及代入法、待定系數(shù)法、配方法等。解代數(shù)綜合題要注意方程、不等式和函數(shù)、統(tǒng)計(jì)等知識點(diǎn)之間的橫向聯(lián)系和數(shù)學(xué)思想方法、解題技巧的靈活運(yùn)用,要抓住題意,化整為零,層層深入,各個(gè)擊破,從而解決問題。2、 幾何綜合題考查的圖形種類多、條件隱晦,在觀察方法上要注意從三角形、四邊形、圓的定義、性質(zhì)、判
17、定來觀察分析圖形,通過尋找、分解、構(gòu)造基本圖形以發(fā)現(xiàn)圖形特征;在思考方法上分析挖掘題目的隱含條件,注意結(jié)合代數(shù)知識與幾何圖形的性質(zhì)思考,不斷的由已知想未知,為解決問題創(chuàng)造條件。【專項(xiàng)達(dá)標(biāo)訓(xùn)練】一、填空題1. 如圖,在四邊形ABCD中,AB=4,BC=7,CD=2,AD=x,則x的取值范圍是 。2. 如圖,在ABC中,AB=AC,D在AB上,BD=AB,則A的取值范圍是。ADBCAxDBC742 第1題圖 第2題圖3. 在RtABC中,C=90°,AC=3,BC=4.若以C點(diǎn)為圓心,r為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn),則r的取值范圍是。4. 如圖,矩形ABCD中,E為DC的中點(diǎn),
18、AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點(diǎn)F,AP、BE相交于點(diǎn)O下列結(jié)論:EP平分CEB;EBPEFB;ABPECP;AOAP=OB2其中正確的序號是 (把你認(rèn)為正確的序號都填上)5. (2015南通)關(guān)于X的一元二次方程ax2-3x-1=0的兩個(gè)不相等的實(shí)數(shù)根都在-1和0之間(不包括-1和0),則a的取值范圍是。二、解答題6.(2014牡丹江)(2014年黑龍江牡丹江)如圖,在RtABC中,ACB=90°,AC=8,BC=6,CDAB于點(diǎn)D點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長
19、度,當(dāng)點(diǎn)P運(yùn)動(dòng)到C時(shí),兩點(diǎn)都停止設(shè)運(yùn)動(dòng)時(shí)間為t秒(1)求線段CD的長;(2)設(shè)CPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并確定在運(yùn)動(dòng)過程中是否存在某一時(shí)刻t,使得SCPQ:SABC=9:100?若存在,求出t的值;若不存在,說明理由(3)當(dāng)t為何值時(shí),CPQ為等腰三角形?備用圖1 備用圖27. (2013連云港)如圖,已知一次函數(shù)y=2x+2的圖像與y軸交于點(diǎn)B,與反比例函數(shù)y=k1/x的圖像的一個(gè)交點(diǎn)為A(1,m),過點(diǎn)B作AB的垂線BD,與反比例函數(shù)y=k2/x交于點(diǎn)D(n,-2).(1)求k1和k2的值;(2)若直線AB、BD分別交x軸于點(diǎn)C、E,試問在y軸上是否存在一個(gè)點(diǎn)F,使得BD
20、FACE?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由8.(2015溫州)如圖,AB是半圓O的直徑,CDAB于點(diǎn)C,交半圓于點(diǎn)E,DF切半圓于點(diǎn)F.已知AEF=135°.(1)求證:DFAB;(2)若OC=CE,BF=,求DE的長.9.(2015海南)如圖,二次函數(shù)y=ax2+bx+3的圖象與x軸相交于點(diǎn)A(3,0)、B(1,0),與y軸相交于點(diǎn)C,點(diǎn)G是二次函數(shù)圖象的頂點(diǎn),直線GC交x軸于點(diǎn)H(3,0),AD平行GC交y軸于點(diǎn)D(1)求該二次函數(shù)的表達(dá)式;(2)求證:四邊形ACHD是正方形;(3)如圖2,點(diǎn)M(t,p)是該二次函數(shù)圖象上的動(dòng)點(diǎn),并且點(diǎn)M在第二象限內(nèi),過點(diǎn)M的直線y=kx交二次函數(shù)的圖象于另一點(diǎn)N若四邊形ADCM的面積為S,請求出S關(guān)于t的函數(shù)表達(dá)式,并寫出t的取值范圍;若CMN的面積等于,請求出此時(shí)中S的值【基礎(chǔ)重點(diǎn)輪動(dòng)】一選擇題1.(2013.山西)解分式方程時(shí),去分母后變形為( )A2+(x+2)=3(x-1)B2-x+2=3(x-1)C2-(x+2)=3(1- x)D 2-(x+2)=3(x-1)2.A.2 B.C.D.3. 下列交通標(biāo)志是軸對稱圖形的是( )A BCD4. 如圖,將ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 皖西學(xué)院《大學(xué)美育實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 靈犀房屋租賃合同范例
- 府城租房合同范例
- 商務(wù)運(yùn)營培訓(xùn)合同范例
- 山地帳篷租用合同范例
- 招標(biāo)項(xiàng)目采購合同范例
- 昌吉物業(yè)合同范例
- 煤礦供電合同范例
- 二手房電子合同范例
- 涂料配送服務(wù)合同范例
- 旅游景區(qū)總經(jīng)理招聘協(xié)議
- 《數(shù)據(jù)結(jié)構(gòu)課程設(shè)計(jì)》赫夫曼編碼實(shí)驗(yàn)報(bào)告
- 公共關(guān)系理論與實(shí)務(wù)教程 教案-教學(xué)方案 項(xiàng)目8 公共關(guān)系專題活動(dòng)管理
- 中醫(yī)內(nèi)科學(xué)虛勞培訓(xùn)課件
- 2024廣東省建筑安全員A證考試題庫附答案
- 魔芋種植產(chǎn)業(yè)項(xiàng)目可行性研究報(bào)告-魔芋產(chǎn)品附加值逐步提高
- 3、2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(99分)
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 創(chuàng)新創(chuàng)業(yè)實(shí)戰(zhàn)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 校園小品《我的未來不是夢》劇本
- 期末 (試題) -2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
評論
0/150
提交評論