



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、小學數(shù)學中滲透數(shù)學思想所謂數(shù)學思想,是指人們對數(shù)學理論與內(nèi)容的本質(zhì)認識,它直接支配著數(shù)學的實踐活動。所謂數(shù)學方法,是指某一數(shù)學活動過程的途徑、程序、手段,它具有過程性、層次性和可操作性等特點。數(shù)學思想是數(shù)學方法的靈魂,數(shù)學方法是數(shù)學思想的表現(xiàn)形式和得以實現(xiàn)的手段,因此,人們把它們稱為數(shù)學思想方法。小學數(shù)學教材是數(shù)學教學的顯性知識系統(tǒng),許多重要的法則、公式,教材中只能看到漂亮的結論,許多例題的解法,也只能看到巧妙的處理,而看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的心智活動過程。因此,數(shù)學思想方法是數(shù)學教學的隱性知識系統(tǒng),小學數(shù)學教學應包括顯性和隱性兩方面知識的教學。如果教師在
2、教學中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習這一傳統(tǒng)的教學過程,即使教師講深講透,并要求學生記住結論,掌握解題的類型和方法,這樣培養(yǎng)出來的學生也只能是“知識型”、“記憶型”的,將完全背離數(shù)學教育的目標。在認知心理學里,思想方法屬于元認知范疇,它對認知活動起著監(jiān)控、調(diào)節(jié)作用,對培養(yǎng)能力起著決定性的作用。學習數(shù)學的目的“就意味著解題”(波利亞語),解題關鍵在于找到合適的解題思路,數(shù)學思想方法就是幫助構建解題思路的指導思想。因此,向?qū)W生滲透一些基本的數(shù)學思想方法,提高學生的元認知水平,是培養(yǎng)學生分析問題和解決問題能力的重要途徑。數(shù)學知識本身是非常重要的,但它并不是惟一的決定因素,真正對
3、學生以后的學習、生活和工作長期起作用,并使其終生受益的是數(shù)學思想方法。未來社會將需要大量具有較強數(shù)學意識和數(shù)學素質(zhì)的人才。21世紀國際數(shù)學教育的根本目標就是“問題解決”。因此,向?qū)W生滲透一些基本的數(shù)學思想方法,是未來社會的要求和國際數(shù)學教育發(fā)展的必然結果。小學數(shù)學教學的根本任務是全面提高學生素質(zhì),其中最重要的因素是思維素質(zhì),而數(shù)學思想方法就是增強學生數(shù)學觀念,形成良好思維素質(zhì)的關鍵。如果將學生的數(shù)學素質(zhì)看作一個坐標系,那么數(shù)學知識、技能就好比橫軸上的因素,而數(shù)學思想方法就是縱軸的內(nèi)容。淡化或忽視數(shù)學思想方法的教學,不僅不利于學生從縱橫兩個維度上把握數(shù)學學科的基本結構,也必將影響其能力的發(fā)展和數(shù)
4、學素質(zhì)的提高。因此,向?qū)W生滲透一些基本的數(shù)學思想方法,是數(shù)學教學改革的新視角,是進行數(shù)學素質(zhì)教育的突破口。二、小學數(shù)學教學中應滲透哪些數(shù)學思想方法古往今來,數(shù)學思想方法不計其數(shù),每一種數(shù)學思想方法都閃爍著人類智慧的火花。一則由于小學生的年齡特點決定有些數(shù)學思想方法他們不易接受,二則要想把那么多的數(shù)學思想方法滲透給小學生也是不大現(xiàn)實的。因此,我們應該有選擇地滲透一些數(shù)學思想方法。筆者認為,以下幾種數(shù)學思想方法學生不但容易接受,而且對學生數(shù)學能力的提高有很好的促進作用。1.化歸思想化歸思想是把一個實際問題通過某種轉化、歸結為一個數(shù)學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這
5、種化歸思想不同于一般所講的“轉化”、“轉換”。它具有不可逆轉的單向性。例1狐貍和黃鼠狼進行跳躍比賽,狐貍每次可向前跳412米,黃鼠狼每次可向前跳234米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔1238米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?這是一個實際問題,但通過分析知道,當狐貍(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離412(或234)米的整倍數(shù),又是陷阱間隔1238米的整倍數(shù),也就是412和1238的“最小公倍數(shù)”(或234和1238的“最小公倍數(shù)”)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程
6、,實質(zhì)上是把一個實際問題通過分析轉化、歸結為一個求“最小公倍數(shù)”的問題,即把一個實際問題轉化、歸結為一個數(shù)學問題,這種化歸思想正是數(shù)學能力的表現(xiàn)之一。2.數(shù)形結合思想數(shù)形結合思想是充分利用“形”把一定的數(shù)量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數(shù)量關系,使問題簡明直觀。例2一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?附圖圖此題若把五次所喝的牛奶加起來,即121418116132就為所求,但這不是最好的解題策略。我們先畫一個正方形,并假設它的面積為單位“1”,由圖可知,1132就為
7、所求,這里不但向?qū)W生滲透了數(shù)形結合思想,還向?qū)W生滲透了類比的思想。3.變換思想變換思想是由一種形式轉變?yōu)榱硪环N形式的思想。如解方程中的同解變換,定律、公式中的命題等價變換,幾何形體中的等積變換,理解數(shù)學問題中的逆向變換等等。例3求12161121201380的和。仔細觀察這些分母,不難發(fā)現(xiàn):212,623,1234,20453801920,再用拆分的方法,考慮和式中的一般項a,n1n(n1)1n1n1于是,問題轉換為如下求和形式:原式11212313414511920(112)(1213)(1314)(1415)(119120)112019204.組合思想組合思想是把所研究的對象進行合理的分組
8、,并對可能出現(xiàn)的各種情況既不重復又不遺漏地一一求解。例4在下面的乘法算式中,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字,求這個算式。從小愛數(shù)學4學數(shù)愛小從分析:由于五位數(shù)乘以4的積還是五位數(shù),所以被乘數(shù)的首位數(shù)字“從”只能是1或2,但如果“從”1,“學”4的積的個位應是1,“學”無解。所以“從”2。在個位上,“學”4的積的個位是2,“學”3或8。但由于“學”又是積的首位數(shù)字,必須大于或等于8,所以“學”8。在千位上,由于“小”4不能再向萬位進位,所以“小”1或0。若“小”0,則十位上“數(shù)”43(進位)的個位是0,這不可能,所以“小”1。在十位上,“數(shù)”43(進位)的個位是1,推出“數(shù)”
9、7。在百位上,“愛”43(進位)的個位還是“愛”,且百位必須向千位進3,所以“愛”9。故欲求乘法算式為21978487912上面這種分類求解方法既不重復,又不遺漏,體現(xiàn)了組合思想。此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數(shù)學教學中都應注意有目的、有選擇、適時地進行滲透。三、小學數(shù)學教學應如何加強數(shù)學思想方法的滲透1.提高滲透的自覺性數(shù)學概念、法則、公式、性質(zhì)等知識都明顯地寫在教材中,是有“形”的,而數(shù)學思想方法卻隱含在數(shù)學知識體系里,是無“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學時間緊而將它作為一個“軟任務”擠掉。對于學生的要求是
10、能領會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數(shù)學思想方法重要性的認識,把掌握數(shù)學知識和滲透數(shù)學思想方法同時納入教學目的,把數(shù)學思想方法教學的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進行數(shù)學思想方法滲透的各種因素,對于每一章每一節(jié),都要考慮如何結合具體內(nèi)容進行數(shù)學思想方法滲透,滲透哪些數(shù)學思想方法,怎么滲透,滲透到什么程度,應有一個總體設計,提出不同階段的具體教學要求。2.把握滲透的可行性數(shù)學思想方法的教學必須通過具體的教學過程加以實現(xiàn)。因此,必須把握好教學過程中進行數(shù)學思想方法教學的契機概念形成的過程,結論推導的過程,方法思考的過程,思路探索的過程,規(guī)律揭示的過程等。同時,進行數(shù)學思想方法的教學要注意有機結合、自然滲透,要有意識地潛移默化地啟發(fā)學生領悟蘊含于數(shù)學知識之中的種種數(shù)學思想方法,切忌生搬硬套、和盤托出、脫離實際等適得其反的做法。3.注重滲透的反復性數(shù)學思想方法是在啟發(fā)學生思維過程中逐步積累和形成的。為此,在教學中,首先要特別強調(diào)解決問題以后的“反思”,因為在這個過程中提煉出來的數(shù)學思想方法,對學生來說才是易于體會
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 63522-13:2024 EN-FR Electrical relays - Tests and measurements - Part 13: Corrosive atmospheres due to sulfur impact
- 【正版授權】 IEC 62309:2024 EN-FR Dependability of new products containing reused parts and life-extended products
- 2025-2030年中國降血脂藥行業(yè)運營現(xiàn)狀及發(fā)展規(guī)劃分析報告
- 2025-2030年中國銀礦石市場運行動態(tài)與發(fā)展趨勢分析報告
- 2025-2030年中國鋁合金防火門窗市場發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025-2030年中國鋼構件行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國遠洋漁輪市場運行格局及發(fā)展趨勢分析報告
- 2025-2030年中國轎車懸架彈簧行業(yè)發(fā)展前景及投資戰(zhàn)略研究報告
- 2025-2030年中國美體塑身衣行業(yè)市場運行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國繡花機市場運行動態(tài)及發(fā)展趨勢分析報告
- 教學課件-電力系統(tǒng)的MATLAB-SIMULINK仿真與應用(王晶)
- GB/T 26189.2-2024工作場所照明第2部分:室外作業(yè)場所的安全保障照明要求
- 新教科版一年級科學下冊第一單元《身邊的物體》全部課件(共7課時)
- 鹽城江蘇鹽城市住房和城鄉(xiāng)建設局直屬事業(yè)單位市政府投資工程集中建設管理中心招聘4人筆試歷年參考題庫附帶答案詳解
- 2024年黑龍江職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 《電商直播》 課件 項目一 走入電商直播
- 《中國宮腔鏡診斷與手術臨床實踐指南(2023版)》解讀課件
- 中藥學電子版教材
- GB/T 9535-1998地面用晶體硅光伏組件設計鑒定和定型
- 復旦校內(nèi)辦事指南
- 建筑公司項目部績效考核管理制度
評論
0/150
提交評論