高數(shù)下期末總復(fù)習(xí)大全同濟(jì)六_第1頁
高數(shù)下期末總復(fù)習(xí)大全同濟(jì)六_第2頁
高數(shù)下期末總復(fù)習(xí)大全同濟(jì)六_第3頁
高數(shù)下期末總復(fù)習(xí)大全同濟(jì)六_第4頁
高數(shù)下期末總復(fù)習(xí)大全同濟(jì)六_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高數(shù)下期末總復(fù)習(xí)大全(同濟(jì)六版)第八章 向量與解析幾何向量代數(shù)定義定義與運(yùn)算的幾何表達(dá)在直角坐標(biāo)系下的表示向量有大小、有方向. 記作或 模向量的模記作和差 單位向量,則方向余弦設(shè)與軸的夾角分別為,則方向余弦分別為點(diǎn)乘(數(shù)量積), 為向量a與b的夾角叉乘(向量積) 為向量a與b的夾角向量與,都垂直定理與公式垂直平行交角余弦兩向量夾角余弦投影向量在非零向量上的投影 平面直線法向量 點(diǎn)方向向量 點(diǎn)方程名稱方程形式及特征方程名稱方程形式及特征一般式一般式點(diǎn)法式點(diǎn)向式三點(diǎn)式參數(shù)式截距式兩點(diǎn)式面面垂直線線垂直面面平行線線平行線面垂直線面平行點(diǎn)面距離 面面距離 面面夾角線線夾角線面夾角 空間曲線:切向量切“

2、線”方程:法平“面”方程:切向量切“線”方程:法平“面”方程:空間曲面:法向量切平“面”方程:法“線“方程:或切平“面”方程:法“線“方程:第十章 重積分重積分積分類型計(jì)算方法典型例題二重積分平面薄片的質(zhì)量質(zhì)量=面密度面積(1) 利用直角坐標(biāo)系X型 Y型 P141例1、例3(2)利用極坐標(biāo)系 使用原則(1) 積分區(qū)域的邊界曲線易于用極坐標(biāo)方程表示( 含圓弧,直線段 );(2) 被積函數(shù)用極坐標(biāo)變量表示較簡(jiǎn)單( 含, 為實(shí)數(shù) ) P147例5(3)利用積分區(qū)域的對(duì)稱性與被積函數(shù)的奇偶性當(dāng)D關(guān)于y軸對(duì)稱時(shí),(關(guān)于x軸對(duì)稱時(shí),有類似結(jié)論)P141例2應(yīng)用該性質(zhì)更方便計(jì)算步驟及注意事項(xiàng)1 畫出積分區(qū)域

3、2 選擇坐標(biāo)系 標(biāo)準(zhǔn):域邊界應(yīng)盡量多為坐標(biāo)軸,被積函數(shù) 關(guān)于坐標(biāo)變量易分離3 確定積分次序 原則:積分區(qū)域分塊少,累次積分好算為妙4 確定積分限 方法:圖示法 先積一條線,后掃積分域5 計(jì)算要簡(jiǎn)便 注意:充分利用對(duì)稱性,奇偶性三重積分空間立體物的質(zhì)量質(zhì)量=密度面積(1) 利用直角坐標(biāo)投影P159例1 P160例2(2) 利用柱面坐標(biāo) 相當(dāng)于在投影法的基礎(chǔ)上直角坐標(biāo)轉(zhuǎn)換成極坐標(biāo) 適用范圍:積分區(qū)域表面用柱面坐標(biāo)表示時(shí)方程簡(jiǎn)單;如 旋轉(zhuǎn)體被積函數(shù)用柱面坐標(biāo)表示時(shí)變量易分離.如P161例3(3)利用球面坐標(biāo) 適用范圍:積分域表面用球面坐標(biāo)表示時(shí)方程簡(jiǎn)單;如,球體,錐體.被積函數(shù)用球面坐標(biāo)表示時(shí)變量易

4、分離. 如,P16510-(1)(4)利用積分區(qū)域的對(duì)稱性與被積函數(shù)的奇偶性第十一章曲線積分與曲面積分曲線積分與曲面積分積分類型計(jì)算方法典型例題第一類曲線積分曲形構(gòu)件的質(zhì)量質(zhì)量=線密度弧長(zhǎng)參數(shù)法(轉(zhuǎn)化為定積分)(1) (2) (3)P189-例1P1903平面第二類曲線積分變力沿曲線所做的功(1) 參數(shù)法(轉(zhuǎn)化為定積分)P196-例1、例2、例3、例4(2)利用格林公式(轉(zhuǎn)化為二重積分)條件:L封閉,分段光滑,有向(左手法則圍成平面區(qū)域D) P,Q具有一階連續(xù)偏導(dǎo)數(shù)結(jié)論:應(yīng)用:P205例4P214-5(1)(4)(3)利用路徑無關(guān)定理(特殊路徑法)等價(jià)條件: 與路徑無關(guān),與起點(diǎn)、終點(diǎn)有關(guān)具有原

5、函數(shù)(特殊路徑法,偏積分法,湊微分法) P211-例5、例6、例7(4)兩類曲線積分的聯(lián)系空間第二類曲線積分變力沿曲線所做的功(1)參數(shù)法(轉(zhuǎn)化為定積分)(2)利用斯托克斯公式(轉(zhuǎn)化第二類曲面積分)條件:L封閉,分段光滑,有向 P,Q,R具有一階連續(xù)偏導(dǎo)數(shù)結(jié)論:應(yīng)用:P240-例1第一類曲面積分曲面薄片的質(zhì)量質(zhì)量=面密度面積投影法: 投影到面類似的還有投影到面和面的公式P217-例1、例2第二類曲面積分流體流向曲面一側(cè)的流量(1)投影法:,為的法向量與軸的夾角前側(cè)取“+”,;后側(cè)取“”,:,為的法向量與軸的夾角右側(cè)取“+”,;左側(cè)取“”,:,為的法向量與軸的夾角上側(cè)取“+”, ;下側(cè)取“”,P

6、226-例2(2)高斯公式 右手法則取定的側(cè)條件:封閉,分片光滑,是所圍空間閉區(qū)域的外側(cè) P,Q,R具有一階連續(xù)偏導(dǎo)數(shù) 結(jié)論: 應(yīng)用:P231-例1、例2(3)兩類曲面積分之間的聯(lián)系轉(zhuǎn)換投影法:P228-例3所有類型的積分:定義:四步法分割、代替、求和、取極限;性質(zhì):對(duì)積分的范圍具有可加性,具有線性性;對(duì)坐標(biāo)的積分,積分區(qū)域?qū)ΨQ與被積函數(shù)的奇偶性。第十二章 級(jí)數(shù)無窮級(jí)數(shù)常數(shù)項(xiàng)級(jí)數(shù)傅立葉級(jí)數(shù)冪級(jí)數(shù)一般項(xiàng)級(jí)數(shù)正項(xiàng)級(jí)數(shù)用收斂定義,存在常數(shù)項(xiàng)級(jí)數(shù)的基本性質(zhì)常數(shù)項(xiàng)級(jí)數(shù)的基本性質(zhì) 若級(jí)數(shù)收斂,各項(xiàng)同乘同一常數(shù)仍收斂. 兩個(gè)收斂級(jí)數(shù)的和差仍收斂.注:一斂、一散之和必發(fā)散;兩散和、差必發(fā)散.去掉、加上或改變級(jí)

7、數(shù)有限項(xiàng), 不改變其收斂性. 若級(jí)數(shù)收斂, 則對(duì)這級(jí)數(shù)的項(xiàng)任意加括號(hào)后所成的級(jí)數(shù)仍收斂,且其和不變。 推論: 如果加括號(hào)后所成的級(jí)數(shù)發(fā)散, 則原來級(jí)數(shù)也發(fā)散. 注:收斂級(jí)數(shù)去括號(hào)后未必收斂.(必要條件) 如果級(jí)數(shù)收斂, 則萊布尼茨判別法若且,則收斂則級(jí)數(shù)收斂.和都是正項(xiàng)級(jí)數(shù),且.若收斂,則也收斂;若發(fā)散,則也發(fā)散.比較判別法比較判別法的極限形式和都是正項(xiàng)級(jí)數(shù),且,則若,與同斂或同散;若,收斂,也收斂;如果,發(fā)散,也發(fā)散。比值判別法根值判別法是正項(xiàng)級(jí)數(shù),,則時(shí)收斂;()時(shí)發(fā)散;時(shí)可能收斂也可能發(fā)散.收斂性和函數(shù)展成冪級(jí)數(shù),缺項(xiàng)級(jí)數(shù)用比值審斂法求收斂半徑的性質(zhì)在收斂域上連續(xù);在收斂域內(nèi)可導(dǎo),且可逐項(xiàng)求導(dǎo);和函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論