版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2.2直接證明與間接證明綜合法和分析法學(xué)習(xí)目標(biāo):1.理解綜合法、分析法的意義,掌握綜合法、分析法的思維特點(diǎn)(重點(diǎn)、易混點(diǎn))2.會用綜合法、分析法解決問題(重點(diǎn)、難點(diǎn))自 主 預(yù) 習(xí)·探 新 知1綜合法定義推證過程特點(diǎn)利用已知條件和某些數(shù)學(xué)定義、公理、定理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(P表示已知條件、已有的定義、公理、定理等,Q表示所要證明的結(jié)論)順推證法或由因?qū)Ч?.分析法定義框圖表示特點(diǎn)一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止這
2、種證明方法叫做分析法.逆推證法或執(zhí)果索因法.思考1:綜合法與分析法的推理過程是合情推理還是演繹推理?提示綜合法與分析法的推理過程是演繹推理,因為綜合法與分析法的每一步推理都是嚴(yán)密的邏輯推理,從而得到的每一個結(jié)論都是正確的,不同于合情推理中的“猜想”思考2: 綜合法與分析法有什么區(qū)別?提示綜合法是從已知條件出發(fā),逐步尋找的是必要條件,即由因?qū)Ч?;分析法是從待求結(jié)論出發(fā),逐步尋找的是充分條件,即執(zhí)果索因基礎(chǔ)自測1思考辨析(1)綜合法是執(zhí)果索因的逆推證法()(2)分析法就是從結(jié)論推向已知()(3)所有證明的題目均可使用分析法證明()答案(1)×(2)×(3)×2命題“對
3、于任意角,cos4sin4cos 2”的證明:“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos 2”,其過程應(yīng)用了() 【導(dǎo)學(xué)號:48662070】A分析法B綜合法C綜合法、分析法綜合使用 D間接證法B從證明過程來看,是從已知條件入手,經(jīng)過推導(dǎo)得出結(jié)論,符合綜合法的證明思路3要證明A>B,若用作差比較法,只要證明_AB>0要證A>B,只要證AB>0.4將下面用分析法證明ab的步驟補(bǔ)充完整:要證ab,只需證a2b22ab,也就是證_,即證_,由于_顯然成立,因此原不等式成立a2b22ab0(ab)20(ab)20用分析法證明ab的步驟為:要
4、證ab成立,只需證a2b22ab,也就是證a2b22ab0,即證(ab)20.由于(ab)20顯然成立,所以原不等式成立合 作 探 究·攻 重 難綜合法的應(yīng)用(1)已知a,b是正數(shù),且ab1,證明:4.(2)在ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asin A(2bc)sinB(2cb)sin C.求證:A的大小為;若sinBsin C,證明ABC為等邊三角形. 【導(dǎo)學(xué)號:48662071】證明(1)法一:因為a,b是正數(shù)且ab1,所以ab2,所以,所以4.法二:因為a,b是正數(shù),所以ab2>0,2>0,所以(ab)4.又ab1,所以4.法三:11224.當(dāng)
5、且僅當(dāng)ab時,取“”號(2)由2asin A(2bc)sinB(2cb)sin C,得2a2(2bc)b(2cb)c,即bcb2c2a2,所以cos A,所以A.因為ABC180°,所以BC180°60°120°.由sinBsin C,得sinBsin( 120°B),sinB(sin 120°cosBcos 120°sinB),sinBcosB,即sin (B30°)1.因為0°<B<120°.所以30°<B30°<150°,所以B30
6、176;90°,B60°.所以ABC60°,即ABC為等邊三角形規(guī)律方法綜合法的解題步驟跟蹤訓(xùn)練1如圖221所示,在四棱錐PABCD中,PA底面ABCD,ABAD,ACCD,ABC60°,PAABBC,E是PC的中點(diǎn)圖221(1)證明:CDAE;(2)證明:PD平面ABE.證明(1)在四棱錐PABCD中,PA底面ABCD,CD平面ABCD,PACD.ACCD,PAACA,CD平面PAC.而AE平面PAC,CDAE.(2)由PAABBC,ABC60°,可得ACPA.E是PC的
7、中點(diǎn),AEPC.由(1)知,AECD,又PCCDC,AE平面PCD.而PD平面PCD,AEPD.PA底面ABCD,PD在底面ABCD內(nèi)的射影是AD.又ABAD,ABPD.又ABAEA,PD平面ABE.分析法的應(yīng)用設(shè)a,b為實(shí)數(shù),求證:(ab). 【導(dǎo)學(xué)號:48662072】證明當(dāng)ab0時,0,(ab)成立當(dāng)ab0時,用分析法證明如下:要證(ab),只需證()2.即證a2b2(a2b22ab),即證a2b22ab.a2b22ab對一切實(shí)數(shù)恒成立,(ab)成立綜上所述,不等式得證規(guī)律方法用分析法證明不等式的三個關(guān)注點(diǎn)(1)分析法證明不等式的依據(jù)是不等式的基本性質(zhì)、基本不等式、已知的重要不等式等.(
8、2)分析法是綜合法的逆過程,即從“未知”看“需知”,執(zhí)果索因,逐步靠攏“已知”,其逐步推理,實(shí)際上是要尋找它的充分條件或充要條件.(3)分析法為逆推證明,因此在使用時要注意邏輯性與規(guī)范性.其格式一般為“要證,只要證,只需證,顯然成立,所以成立”.跟蹤訓(xùn)練2已知a,b是正實(shí)數(shù),求證:. 【導(dǎo)學(xué)號:48662073】證明要證,只要證ab·()即證(ab)()(),因為a,b是正實(shí)數(shù),即證ab,也就是要證ab2,即()20.而該式顯然成立,所以.綜合法和分析法的綜合應(yīng)用探究問題1在實(shí)際解題時,綜合法與分析法是否可以結(jié)合起來使用?提示:在實(shí)際解題時,常常把分析法和綜合法結(jié)合起來使用,即先利用
9、分析法尋找解題思路,再利用綜合法有條理地表述解答過程2你會用框圖表示綜合法與分析法交叉使用時的解題思路嗎?提示:用框圖表示如下:其中P表示已知條件、定義、定理、公理等,Q表示要證明的結(jié)論已知a、b、c是不全相等的正數(shù),且0<x<1.求證:logxlogxlogx<logxalogxblogxc.思路探究:解答本題的關(guān)鍵是利用對數(shù)運(yùn)算法則和對數(shù)函數(shù)性質(zhì)轉(zhuǎn)化成整式不等式證明證明要證明:logxlogxlogx<logxalogxblogxc,只需要證明logx<logx(abc)由已知0<x<1,只需證明··>abc.由公式>
10、;0,>0,>0,又a,b,c是不全相等的正數(shù),··>abc.即··>abc成立logxlogxlogx<logxalogxblogxc成立母題探究:1.(變條件)刪掉本例條件“0<x<1”,求證:lg lg lg lg algblg c.證明要證lg lg lg lg algblg c,只需證lglg(a·b·c),即證··abc.因為a,b,c為不全相等的正數(shù),所以0,0,0,且上述三式中等號不能同時成立,所以··abc成立,所以lg lg lg l
11、g algblg c成立2(變條件)把本例條件“0<x<1”換成“abc1”,求證:>.證明法一:由左式推證右式abc1,且a,b,c為互不相等的正數(shù),bcacab>.>.法二:由右式推證左式a,b,c為互不相等的正數(shù),且abc1,<(基本不等式).規(guī)律方法分析綜合法的解題思路分析綜合法的解題思路是:根據(jù)條件的結(jié)構(gòu)特點(diǎn)去轉(zhuǎn)化結(jié)論,得到中間結(jié)論Q;根據(jù)結(jié)論的結(jié)構(gòu)特點(diǎn)去轉(zhuǎn)化條件,得到中間結(jié)論P(yáng);若由P可推出Q,即可得證.當(dāng) 堂 達(dá) 標(biāo)·固 雙 基1欲證<成立,只需證()A()2<()2B()2<()2C()2<()2D()2&l
12、t;()2C<0,<0,故<<()2<()2.2. 在ABC中,若sin Asin B<cos AcosB,則ABC一定是 () 【導(dǎo)學(xué)號:48662074】A直角三角形B銳角三角形C鈍角三角形 D等邊三角形C由sin AsinB<cos AcosB得cos(AB)cos C>0,所以cos C<0,即ABC一定是鈍角三角形3如果abab,則實(shí)數(shù)a,b應(yīng)滿足的條件是_ab且a0,b0ababaabba()b()(ab)()0()()20,只需ab且a,b都不小于零即可4設(shè)a0,b0,c0,若abc1,則的最小值為_9因為abc1,且a0,b0,c0,所以33222369.當(dāng)且僅當(dāng)abc時等號成立5設(shè)ab>0,求證:3a32b33a2b2ab2.(請用分析法和綜合法兩種方法證明) 【導(dǎo)學(xué)號:48662075】證明法一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版汽車銷售合同擔(dān)保法執(zhí)行合同3篇
- 2025年環(huán)保節(jié)能建筑材料供應(yīng)合同3篇
- 2025年度個人汽車貸款購車合同(新能源汽車購置補(bǔ)貼合同)3篇
- 長沙幼兒師范高等專科學(xué)?!睹绹膶W(xué)史及選讀(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度文化產(chǎn)業(yè)股權(quán)投資保密及運(yùn)營管理協(xié)議3篇
- 校園心理咨詢服務(wù)體系的完善與創(chuàng)新
- 2025年度夫妻忠誠協(xié)議履行監(jiān)督與違約追究協(xié)議4篇
- 學(xué)生實(shí)訓(xùn)前安全教育的重要性與策略
- 心理教育課程在學(xué)生心理健康中的重要性
- 個人車輛抵押權(quán)協(xié)議標(biāo)準(zhǔn)范本2024版
- DL∕T 1100.1-2018 電力系統(tǒng)的時間同步系統(tǒng) 第1部分:技術(shù)規(guī)范
- 三角形與全等三角形復(fù)習(xí)教案 人教版
- 2024年1月高考適應(yīng)性測試“九省聯(lián)考”英語 試題(學(xué)生版+解析版)
- 《朝天子·詠喇叭-王磐》核心素養(yǎng)目標(biāo)教學(xué)設(shè)計、教材分析與教學(xué)反思-2023-2024學(xué)年初中語文統(tǒng)編版
- 成長小說智慧樹知到期末考試答案2024年
- 紅色革命故事《王二小的故事》
- 海洋工程用高性能建筑鋼材的研發(fā)
- 英語48個國際音標(biāo)課件(單詞帶聲、附有聲國際音標(biāo)圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語考試真題
評論
0/150
提交評論