高中數(shù)學(xué)直線與方程知識點(diǎn)總結(jié)_第1頁
高中數(shù)學(xué)直線與方程知識點(diǎn)總結(jié)_第2頁
高中數(shù)學(xué)直線與方程知識點(diǎn)總結(jié)_第3頁
高中數(shù)學(xué)直線與方程知識點(diǎn)總結(jié)_第4頁
高中數(shù)學(xué)直線與方程知識點(diǎn)總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、直線與方程1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定= 0°.2、 傾斜角的取值范圍: 0°180°. 當(dāng)直線l與x軸垂直時(shí), = 90°.:3、直線的斜率:一條直線的傾斜角(90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tan當(dāng)直線l與x軸平行或重合時(shí), =0°, k = tan0°=0;當(dāng)直線l與x軸垂直時(shí), = 90°, k 不存在.由此可知, 一條直線l的傾

2、斜角一定存在,但是斜率k不一定存在.4、 直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1x2,用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 兩條直線的平行與垂直1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L22、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即直線的點(diǎn)斜式方程1、 直線的點(diǎn)

3、斜式方程:直線經(jīng)過點(diǎn),且斜率為 2、直線的斜截式方程:已知直線的斜率為,且與軸的交點(diǎn)為 3.2.2 直線的兩點(diǎn)式方程1、直線的兩點(diǎn)式方程:已知兩點(diǎn)其中 y-y1/y-y2=x-x1/x-x22、直線的截距式方程:已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中3.2.3 直線的一般式方程1、直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)來2、各種直線方程之間的互化。3.3直線的交點(diǎn)坐標(biāo)與距離公式3.3.1兩直線的交點(diǎn)坐標(biāo)1、給出例題:兩直線交點(diǎn)坐標(biāo)L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程組 得 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)3.3.2 兩

4、點(diǎn)間距離兩點(diǎn)間的距離公式3.3.3 點(diǎn)到直線的距離公式1點(diǎn)到直線距離公式:點(diǎn)到直線的距離為:2、兩平行線間的距離公式:已知兩條平行線直線和的一般式方程為:,:,則與的距離為 直線與方程公式整理(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°180°(2)直線的斜率定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),; 當(dāng)時(shí),; 當(dāng)時(shí),不存在。過兩點(diǎn)的直線的斜率公式: 注意下面四點(diǎn)

5、:(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程點(diǎn)斜式:直線斜率k,且過點(diǎn)注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。斜截式:,直線斜率為k,直線在y軸上的截距為b兩點(diǎn)式:()直線兩點(diǎn),截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。一般式

6、:(A,B不全為0)注意:各式的適用范圍 特殊的方程如:平行于x軸的直線:(b為常數(shù)); 平行于y軸的直線:(a為常數(shù)); (4)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)過定點(diǎn)的直線系()斜率為k的直線系:,直線過定點(diǎn);()過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。(5)兩直線平行與垂直當(dāng),時(shí),;注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。(6)兩條直線的交點(diǎn) 相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解 ; 方程組有無數(shù)解與重合(7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

7、(8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離(9)兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。例1、在ABC中,已知A(5,2)、B(7,3),且AC邊的中點(diǎn)M在y軸上,BC邊的中點(diǎn)N在x軸上,求:(1)頂點(diǎn)C的坐標(biāo);(2)直線MN的方程解:(1)設(shè)點(diǎn)C的坐標(biāo)為(x,y),則有0,0,x5,y3.即點(diǎn)C的坐標(biāo)為(5,3)(2)由題意知,M(0,),N(1,0),直線MN的方程為x1,即5x2y50.例2、已知兩點(diǎn)A(1,2),B(m,3)(1)求直線AB的方程;(2)已知實(shí)數(shù)m1,1,求直線AB的傾斜角的取值范圍解:(1)當(dāng)m1時(shí),直線AB的方程為x1,當(dāng)m1時(shí),直線AB的方程為y2(x1)(2)當(dāng)m1時(shí),;當(dāng)m1時(shí),m1,0)(0,k(,),)(,綜合知,直線AB的傾斜角的取值范圍為,例3、為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪(如圖所示),另外,AEF內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測量AB100 m,BC80 m,AE30 m,AF20 m,應(yīng)如何設(shè)計(jì)才能使草坪面積最大?解:建立如圖所示直角坐標(biāo)系,則E(30,0),F(xiàn)(0,20),于是,線段EF的方程是1(0x30),在線段EF上取點(diǎn)P(m,n),作PQBC于點(diǎn)Q,PRCD于點(diǎn)R,設(shè)矩形PQCR的面積為S,則:S|PQ|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論