機器學習驅(qū)動的基本面研究程序_第1頁
機器學習驅(qū)動的基本面研究程序_第2頁
機器學習驅(qū)動的基本面研究程序_第3頁
機器學習驅(qū)動的基本面研究程序_第4頁
機器學習驅(qū)動的基本面研究程序_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期附 錄正文未報告部分程序列表1.數(shù)據(jù)及代碼說明錯誤!未定義書簽。1)數(shù)據(jù)說明:12)代碼說明:12.代碼整理4a)MainFile.py4b)DataTransfrom.py9c)NWttest.py12d)ReturnSeriesTest.py14e)StrategyConstruct.py16f)FactorTest.py27g)DFN.py45h)RNNM.py48i)Ensembleall.py51j)transecfee.py52k)selectFactor.py541等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期數(shù)據(jù)及代

2、碼說明1.1)數(shù)據(jù)說明:a)factor 文件夾中包含初始 96 項因子數(shù)據(jù)(由于雜志社對附件大小的要求,這里僅在factorselect文件夾內(nèi)展示了 16 項因子數(shù)據(jù),完整的 96 項因子數(shù)據(jù)請通過數(shù)據(jù)庫自行或作者)b)factorselect 文件夾中包含篩選完成的 16 項因子數(shù)據(jù)c)returnseries 文件夾中包含 3/12/24/36滑動窗口下各算法構建投資組合月度收益序列d)ff3/ff5 分別為 Fama-French3 因子數(shù)據(jù),RF 為月度無風險利率數(shù)據(jù),final_return 為股票月度數(shù)據(jù)e)ff30 為去掉市值最小的 30%股票后分別根據(jù)市值(size)和價格

3、比(EP)分組后構建 MKT/SMB/VMG 3 因子數(shù)據(jù)f)factorEW/factorVW 分別為單因子檢驗 10-1組合(等權重/市值)月度序列2)代碼說明:a)MainFile.py主程序,運行該函數(shù)即可得到各主要結果b)DataTransfrom.py導 入 基 礎 數(shù) 據(jù) 并 進 行 預 處 理 , 最 后 將 原 始 數(shù) 據(jù) 轉 換 成 每 個 截 面 一 個 stocknumfactornum 的Dataframe,列名為各因子名稱+stock'+'ret','stock'為股票代碼,ret為對應截面股票月度c)NWttest.py定義

4、對某一序列是否異于 0 進行 Newey and West (1987) t 檢驗函數(shù)d)ReturnSeriesTest.py在獲取各個算法構建組合月度序列后, 對各個序列與 OLS 回歸(benchmark)和 DFN(表現(xiàn)最好的深度算法)序列是否顯著差異進行 NW-T 檢驗1等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期e)StrategyConstruct.pyi.投資組合構建通用函數(shù)(output),ii.FC 和 ensemble 無內(nèi)置算法包,故單獨構建 FC 和 ensemblennf)FactorTest.py因子檢驗補充結果,內(nèi)容包含:i.在去掉市值最小的 30%股

5、票后分別根據(jù)市值(size)和價格比(EP)分組后構建 MKT/SMB/VMG 3 因子ii.單因子 10 分組 10-1/1-10組合因子調(diào)整iii.單因子 10 分組檢驗各組因子調(diào)整iv.各因子與size 因子雙變量分組檢驗結果v.各因子與 BM 因子雙變量分組檢驗結果vi.6.96 項因子 fama macbeth 回歸檢驗結果g)DFN.py深度前饋庫文件,包含深度前饋函數(shù)DFN(),需在 GPU 環(huán)境下運行h)RNNM.py循環(huán)神經(jīng)庫文件,包含如下內(nèi)容:i.基礎循環(huán)神經(jīng)單元:BaseRnn()ii.可用于訓練的循環(huán)神經(jīng)整體架構:lstmmodule(),該架構基于 BaseRnn()

6、構建循環(huán)神經(jīng)。該文件需在 GPU 環(huán)境下運行i)Ensembleall.py集成深度學習模型庫文件,包含集成模型:Ensemblelr()。因其中集成深度學習模型,需在 GPU 環(huán)境下使用,如不集成深度學習模型,則無 GPU限制。j)transecfee.py計算不同成本下的投資組合績效變化, 包含函數(shù) transecfee() 以及showtransecfee()直接調(diào)用showtransecfee()即可2等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期k) selectFactor.py用于篩選重要因子,包含:i.非循環(huán)神經(jīng)模型所用的 dropimportant()函數(shù)ii.循環(huán)神

7、經(jīng)模型所用的dropimportant2()函數(shù)iii.FC 方法的篩選函數(shù) FCselect()函數(shù)注:獲取結果需要運行的python 文件僅為:MainFile.py 和 FactorTest.py3等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期2. 代碼整理a) MainFile.py1234567891011121314151617181920212223242526272829303132333435363738#!/usr/bin/env python# -*- coding: utf-8 -*-"""description:構建學習驅(qū)動多因子

8、投資策略主函數(shù)1.首先輸入各算法參數(shù)(參數(shù)根據(jù)第一個滑動窗口網(wǎng)格調(diào)參確定 此處直接輸入)2.全樣本 3/12/24/36滑動窗口函數(shù)運行,最終直接輸出output'文件夾內(nèi)組合月度FF3/5-alpha,sharperatio并將序列保43.全樣本 3/12/24/36滑動窗口各個算法組合月度序列是否顯著差異NW-T 檢驗4.不同費率下的組合績效結果5.全樣本 12華東窗口下各個算法的特征篩選6.特征篩選后 16 項因子 12滑動窗口函數(shù)運行,最終輸出組合月度FF3/5-alpha,sharpe ratio 并將序列保output'文件夾內(nèi)注:深度學習算法要在使有GPU 的環(huán)境

9、下進行訓練"""from StrategyConstruct import FC, output, output2, comboutput, ensemblennfrom selectFactor import dropimportant, dropimportant2, FCselectfrom DataTransfrom import datatransfrom, datatransfrom2from xgboost.sklearn import XGBRegressorfrom sklearn.ensemble import GradientBoosting

10、Regressorfrom sklearn.linear_mimport LinearRegression,Lasso,ElasticNet,Ridgefrom sklearn.cross_decomposition import PLSRegressionfrom sklearn.neural_network import MLPRegressorfrom sklearn.svm import SVRimport DFNimport RNNMas rmimport Ensembleall as eaimport warningsfrom mxnet import gpuimport osfr

11、om transecfee import showtrasecfeefrom ReturnSeriesTest import returnseriestestwarnings.filterwarnings('ignore')#各個算法參數(shù)(根據(jù)第一個窗口網(wǎng)格調(diào)參確定)window=3,12,24,36PLS_params=2,2,1,1等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期3940414243444546474849505152535455565758596061626364656667686970717273747576777879805lasso_param

12、s=1e-3,5e-4,0.01,0.01ridge_params=0.1,0.005,0.01,0.005elasticnet_params='alpha':0.01,1e-3,0.01,0.1,'l1_ratio':0.3,0.3,0.7,0.3SVR_params='kernel':'linear','linear','rbf','rbf','gamma':1e-3,1e-3,1e-3,1e-4,'C':0.01,0.001,0.01,1e-4G

13、BDT_params='learning_rate':0.1,0.1,0.1,0.1,'maxdepth':2,3,2,2,'n_estimators':100,100,100,100#XGBOOST 與GBDT 相同 此處共用ENANN_params = 'max_iter': 100, 100, 200, 300, 'p': 0.3, 0.5, 0.7, 0.5DFN_params = 'learning_rate':0.1, 0.1, 0.1, 0.001, 'batch':

14、300, 400, 300, 400LSTM_params = 'learning_rate':1e-4, 1e-5, 1e-4, 1e-6, 'depth': 2, 2, 1, 2,'hidden_number': 256*4RNN_params = 'learning_rate':0.1, 0.1, 0.1, 0.001, 'depth': 1, 1, 2, 1,'hidden_number': 256*4#*2.全樣本 3/12/24/36滑動窗口函數(shù)運行*#path = r'.Dat

15、aBasefactor'#96 項因子所在路徑factorname = x1:-4 for x in os.listdir(path)riskfree, timeseries, factor, timeseries2, index = datatransfrom(path)0,datatransfrom(path)1, datatransfrom(path)2, datatransfrom2(path)0,datatransfrom2(path)1for i in range(4):i= 0output(windowi,LinearRegression(),'OLS'+

16、str(windowi),riskfreei, timeseries)FC(windowi, riskfreei, timeseries, 96,'FC')output(windowi, PLSRegression(PLS_paramsi), 'PLS' + str(windowi), riskfreei,timeseries)output(windowi,Lasso(alpha=lasso_paramsi),'Lasso'+ str(windowi), riskfreei,timeseries)output(windowi,Ridge(alph

17、a=ridge_paramsi),'Ridge'+str(windowi),riskfreei,timeseries)output(windowi,ElasticNpha= elasticnet_params'alpha' i,l1_ratio=elasticnet_params'l1_ratio'i),'ElasticNet'+str(windowi),riskfreei, timeseries)output(windowi,SVR(kernel=SVR_params'kernel'i,gamma= SVR_pa

18、rams 'gamma'i,C=SVR_params 'C'i ),'SVR'+str(windowi),riskfreei, timeseries)output(windowi,GradientBoostingRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i,learning_rate=GBDT_params'learning_rate'i), 'GBDT' +str

19、(windowi),riskfreei, timeseries)output(windowi,XGBRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211226, learning_rate=G

20、BDT_params'learning_rate'i), 'XGBOOST' + str(windowi), riskfreei,timeseries)output(windowi, ensemblenn(5,muse = MLPRegressor(solver = 'lbfgs',max_iter=ENANN_params'max_iter'i), pickpercent=ENANN_params'p'i), 'ENANN' +str(windowi), riskfreei, timeseries

21、)output(windowi, DFN.DFN(outputdim=1, neuralset=96, 50, 25, 10, 5, 2, ctx=gpu(0),epoch=10, batch_size=DFN_params'batch'i, lr=DFN_params'learning_rate'i), 'DFN' +str(windowi), riskfreei, timeseries)output2(windowi, rm.lstmmodule(96, LSTM_params'hidden_number'i,LSTM_par

22、ams'depth'i, 100, 3571, lr=LSTM_params'learning_rate'i), 'LSTM'+str(windowi) ,riskfreei, timeseries2)output2(windowi, rm.lstmmodule(96, RNN_params'hidden_number'i,RNN_params'depth'i, 100, 3571, lr=RNN_params'learning_rate'i, ntype='RNN'), '

23、RNN'+str(windowi), riskfreei, timeseries2)mlist = DFN.DFN(outputdim=1, neuralset=96, 50, 25, 10, 5, 2, ctx=gpu(0),epoch=10, batch_size=DFN_params'batch'i, lr=DFN_params'learning_rate'i),ensemblenn(5,muse = MLPRegressor(solver = 'lbfgs',max_iter=ENANN_params'max_iter&#

24、39;i), pickpercent=ENANN_params'p'i),XGBRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i, learning_rate=GBDT_params'learning_rate'i),GradientBoostingRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'm

25、axdepth'i,learning_rate=GBDT_params'learning_rate'i),PLSRegression(PLS_paramsi),Ridge(alpha=ridge_paramsi),SVR(kernel=SVR_params'kernel'i,gamma= SVR_params 'gamma'i,C=SVR_params 'C'i)# PLS 一定要放在倒數(shù)第三個(PLS 輸出形式為list 故進行了進一步處理)nmolist = rm.lstmmodule(96, LSTM_params&

26、#39;hidden_number'i, LSTM_params'depth'i,100, 3571, lr=LSTM_params'learning_rate'i),rm.lstmmodule(96, RNN_params'hidden_number'i, RNN_params'depth'i,100, 3571, lr=RNN_params'learning_rate'i, ntype='RNN')# 循環(huán)神經(jīng)模型mname = 'DFN', 'En-ann

27、9;, 'xgboost', 'GBDT', 'lasso', 'Elasticnet', 'pls', 'Ridge','svm', 'LSTM', 'RNN'ensemblem= ea.Ensemblelr(mlist, nmolist, mname)comboutput(windowi,ensemblem, 'Ensemble'+str(windowi),riskfreei, timeseries2,index)#*3.各算法序列

28、差異NW-t 檢驗*#for i in window:returnseriestest(i)等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期1231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631647#*4.不同費率情形*#showtrasecfee(0.005)showtrasecfee(0.0075)showtrasecfee(0.01)#*5.全樣本 12特征篩選過程*#i = 1#選取 1

29、2滑動窗口篩選因子dropimportant(windowi ,LinearRegression(), 'OLS'+str(windowi), factorname,timeseries,0.0201)FCselect(factorname, timeseries)dropimportant(windowi, PLSRegression(PLS_paramsi), 'PLS', factorname, timeseries,0.0230)dropimportant(windowi, Lasso(alpha=lasso_paramsi), 'Lasso&#

30、39;, factorname, timeseries,0.0208)dropimportant(windowi, Ridge(alpha=ridge_paramsi), 'Ridge', factorname, timeseries,0.0208)dropimportant(windowi, ElasticNpha= elasticnet_params'alpha' i,l1_ratio=elasticnet_params'l1_ratio'i), 'ElasticNet', factorname, timeseries, 0.

31、0212)dropimportant(windowi, SVR(kernel=SVR_params'kernel'i,gamma= SVR_params'gamma'i,C= SVR_params 'C'i ), 'SVR', factorname, timeseries, 0.0225)dropimportant(windowi,GradientBoostingRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'm

32、axdepth'i,learning_rate=GBDT_params'learning_rate'i), 'GBDT', factorname,timeseries, 0.0268)dropimportant(windowi,XGBRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i, learning_rate=GBDT_params'learning_rate'i), 'XGBOOS

33、T',factorname, timeseries, 0.0273)dropimportant(windowi, ensemblenn(5,muse = MLPRegressor(solver = 'lbfgs',max_iter=ENANN_params'max_iter'i), pickpercent=ENANN_params'p'i), 'ENANN',factorname, timeseries, 0.0234)dropimportant(windowi, DFN.DFN(outputdim=1, neuralse

34、t=96, 50, 25, 10, 5, 2, ctx=gpu(0),epoch=10, batch_size=DFN_params'batch'i, lr=DFN_params'learning_rate'i), 'DFN',factorname, timeseries, 0.0278)dropimportant2(windowi, rm.lstmmodule(95, LSTM_params'hidden_number'i,LSTM_params'depth'i, 100, 3571, lr=LSTM_param

35、s'learning_rate'i), 'LSTM', factorname,timeseries2, 0.0257)dropimportant2(windowi, rm.lstmmodule(95, RNN_params'hidden_number'i,等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期1651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042

36、052068RNN_params'depth'i, 100, 3571, lr=RNN_params'learning_rate'i, ntype='RNN'), 'RNN',factorname, timeseries2, 0.0210)#*6.特征篩選后 16 項因子 12滑動窗口函數(shù)運行*#path = r'.DataBasefactorselect'#經(jīng)過篩選后因子集合所在路徑riskfree,timeseries,factor,timeseries2=datatransfrom(path)0,datatr

37、ansfrom(path)1,datatransfrom(path)2,datatransfrom2(path,after=True)0i=1 #選取 12滑動窗口測試篩選后因子集合績效表現(xiàn)output(windowi,LinearRegression(),'OLS'+str(windowi),riskfreei, timeseries)FC(windowi, riskfreei, timeseries, 11,'FC')output(windowi, PLSRegression(PLS_paramsi), 'PLS' + str(windowi

38、), riskfreei,timeseries)output(windowi,Lasso(alpha=lasso_paramsi),'Lasso'+ str(windowi), riskfreei,timeseries)output(windowi,Ridge(alpha=ridge_paramsi),'Ridge'+str(windowi),riskfreei,timeseries)output(windowi,ElasticNpha= elasticnet_params'alpha' i,l1_ratio=elasticnet_params&

39、#39;l1_ratio'i),'ElasticNet'+str(windowi),riskfreei, timeseries)output(windowi,SVR(kernel=SVR_params'kernel'i,gamma= SVR_params 'gamma'i,C=SVR_params 'C'i ),'SVR'+str(windowi),riskfreei, timeseries)output(windowi,GradientBoostingRegressor(n_estimators=GBDT

40、_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i,learning_rate=GBDT_params'learning_rate'i), 'GBDT' +str(windowi),riskfreei, timeseries)output(windowi,XGBRegressor(n_estimators=GBDT_params'n_estimators'i,max_depth=GBDT_params'maxdepth'i, learnin

41、g_rate=GBDT_params'learning_rate'i), 'XGBOOST' + str(windowi), riskfreei,timeseries)output(windowi, ensemblenn(5,muse = MLPRegressor(solver = 'lbfgs',max_iter=ENANN_params'max_iter'i), pickpercent=ENANN_params'p'i), 'ENANN' +str(windowi), riskfreei, ti

42、meseries)output(windowi, DFN.DFN(outputdim=1, neuralset=16, 50, 25, 10, 5, 2, ctx=gpu(0),epoch=10, batch_size=DFN_params'batch'i, lr=DFN_params'learning_rate'i), 'DFN' +str(windowi), riskfreei, timeseries)output2(windowi, rm.lstmmodule(11, LSTM_params'hidden_number'i,

43、LSTM_params'depth'i, 100, 3571, lr=LSTM_params'learning_rate'i), 'LSTM'+str(windowi) ,riskfreei, timeseries2)output2(windowi, rm.lstmmodule(11, RNN_params'hidden_number'i,RNN_params'depth'i, 100, 3571, lr=RNN_params'learning_rate'i, ntype='RNN'

44、), 'RNN'+str(windowi), riskfreei, timeseries2)等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期b)DataTransfrom.py123456789101112131415161718192021222324252627282930313233343536373839409#!/usr/bin/env python# -*- coding: utf-8 -*-"""description:導入基礎數(shù)據(jù)并進行一些預處理 最后變成每個截面一個Dataframe,列名為各因子名稱+stock'+

45、'ret' index 代表單只股票"""import glob,osimport pandas as pdimport warnings#*1.導入因子數(shù)據(jù) 無風險利率 股票月度數(shù)據(jù)*#warnings.filterwarnings('ignore')def datatransfrom(datapath):path=datapathfile = glob.glob(os.path.join(path, "*.csv")k=for i in range(len(file):k.append(pd.read_csv

46、(filei)#股票月度ret=pd.read_csv('.DataBasefinal_return.csv')#無風險利率rf=pd.read_csv('.DataBaseRF.csv')rf3=rf.iloc3:-1,:rf12=rf.iloc12:-1,:rf24=rf.iloc24:-1,:rf36=rf.iloc36:-1,:riskfree = rf3, rf12, rf24, rf36#因子名稱factor=for i in range(len(file):factor.append(filei20:-4)factor.append('st

47、ock')#*對原始數(shù)據(jù)進行預處理 每個截面一個Dataframe,列名為96 因子名稱+stock'+'ret'index 代表單只股票*#timeseries=for i in range(len(ret.columns)-1):等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期414243444546474849505152535455565758596061626364656667686970717273747576777879808182# 加入月度令月度不為null方便函數(shù)處理for i in range(len(timeseries2):10k

48、l=pd.concat(kj.iloc:,i+1 for j in range(len(file),axis=1)kl'stock' = ret.iloc:,0kl.columns = factorkl=kl.iloc:-2,:timeseries.append(kl)#刪除月度不的數(shù)據(jù)條for i in range(len(timeseries):timeseriesi'ret'=ret.iloc:,i+1timeseriesi'ret'=timeseriesi'ret'.fillna('null')timese

49、riesi=timeseriesitimeseriesi'ret'.isin('null')return riskfree,timeseries,factor# 為LSTMRNN 設計的數(shù)據(jù)函數(shù)def datatransfrom2(datapath, after=False):path=datapathfile = glob.glob(os.path.join(path, "*.csv")k=for i in range(len(file):k.append(pd.read_csv(filei)#股票月度ret=pd.read_csv(

50、9;.DataBasefinal_return.csv')#因子名稱factor=for i in range(len(file):factor.append(filei20:-4)factor.append('stock')#*對原始數(shù)據(jù)進行預處理 每個截面一個Dataframe,列名為96 因子名稱+stock'+'ret'index 代表單只股票*#timeseries2=index = for i in range(len(ret.columns)-1):kl=pd.concat(kj.iloc:,i+1 for j in range(l

51、en(file),axis=1)kl'stock' = ret.iloc:,0kl.columns = factorif after:# 保證篩選后因子個數(shù)為 3571 個kl = kl.iloc:, :else:kl = kl.iloc:-2,:timeseries2.append(kl)等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期8384858611timeseries2i'ret' = ret.iloc:, i + 1timeseries2i'ret' = timeseries2i'ret'.fillna('

52、;null')index.append(timeseries2i'ret'.isin('null')return timeseries2, index等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期c)NWttest.py12345678910111213141516171819202122232425262728293031323334353637383940414212# -*- coding:utf-8 -*-'''description:NW-t 檢驗所用包'''import numpy as

53、 npfrom collections import namedtuplefrom scipy.stats import distributionsdef _ttest_finish(df, t):''':param df:自由度:param t: t 值:return: 輸出 t 和對應p 值'''prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tailif t.ndim = 0:t = t()return t, probNWt_1sampleResu

54、lt = namedtuple('NWT_1sampResult', ('statistic', 'pvalue')def nwttest_1samp(a, popmean, axis=0,L=1):'''主函數(shù):param a: 數(shù)據(jù)列表:param popmean: 原假設值u0:param axis: 行還是列 默認行:param L: lag滯后多少 默認 1:return: 輸出 nw-t 和對應p 值'''a = np.array(a)N = len(a)df = N-1e = a - np.mean(a)residuals = np.sum(e*2)Q = 0for i in range(L):w_l = 1 - (i+1)/(1+L)for j in range(1,N):Q += w_l*ej*ej-(i+1)S = residuals + 2*Q等:學習驅(qū)動的基本面量化投資研究2019 年第 8 期434445464748495013nw_var = S/Nd = np.m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論