數(shù)模培訓(xùn)_matlab插值方法_第1頁
數(shù)模培訓(xùn)_matlab插值方法_第2頁
數(shù)模培訓(xùn)_matlab插值方法_第3頁
數(shù)模培訓(xùn)_matlab插值方法_第4頁
數(shù)模培訓(xùn)_matlab插值方法_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn) 插插 值值2實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容實(shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件包求解插值問題。、掌握用數(shù)學(xué)軟件包求解插值問題。1、了解插值的基本內(nèi)容。、了解插值的基本內(nèi)容。11一維插值一維插值22二維插值二維插值33實(shí)驗(yàn)作業(yè)實(shí)驗(yàn)作業(yè)3一一 維維 插插 值值一、一、插值的定義插值的定義二、插值的方法二、插值的方法三、用三、用Matlab解插值問題解插值問題返回返回4返回返回二維插值二維插值一、二維插值定義一、二維插值定義二、網(wǎng)格節(jié)點(diǎn)插值法二、網(wǎng)格節(jié)點(diǎn)插值法三、用三、用MatlabMatlab解插值問題解插值問題最鄰近插值最鄰近插值分片線性插值分片線性插值雙線性插值雙線性插

2、值網(wǎng)格節(jié)點(diǎn)數(shù)據(jù)的插值網(wǎng)格節(jié)點(diǎn)數(shù)據(jù)的插值散點(diǎn)數(shù)據(jù)的插值散點(diǎn)數(shù)據(jù)的插值5一維插值的定義一維插值的定義已知已知 n+1個(gè)節(jié)點(diǎn)個(gè)節(jié)點(diǎn), 1 , 0(),(njyxjj其中其中jx互不相同,不妨設(shè)互不相同,不妨設(shè)),10bxxxan求任一插值點(diǎn)求任一插值點(diǎn))(*jxx 處的插值處的插值.*y0 x1xnx0y1y節(jié)點(diǎn)可視為由節(jié)點(diǎn)可視為由)(xgy 產(chǎn)生產(chǎn)生,,g表達(dá)式復(fù)雜表達(dá)式復(fù)雜,,或無封閉形式或無封閉形式,,或未知或未知.。*x*y6 構(gòu)造一個(gè)構(gòu)造一個(gè)(相對(duì)簡單的相對(duì)簡單的)函數(shù)函數(shù)),(xfy 通過全部節(jié)點(diǎn)通過全部節(jié)點(diǎn), 即即), 1 ,0()(njyxfjj再用再用)(xf計(jì)算插值,即計(jì)算插值,

3、即).(*xfy 0 x1xnx0y1y*x*y返回返回7 稱為拉格朗日插值基函數(shù)拉格朗日插值基函數(shù)。n0iiiny)x(L)x(P 已知函數(shù)f(x)在n+1個(gè)點(diǎn)x0,x1,xn處的函數(shù)值為 y0,y1,yn 。求一n次多項(xiàng)式函數(shù)Pn(x),使其滿足: Pn(xi)=yi,i=0,1,n. 解決此問題的拉格朗日插值多項(xiàng)式公式如下其中Li(x) 為n次多項(xiàng)式:)xx()xx)(xx()xx)(xx()xx()xx)(xx()xx)(xx()x(Lni1ii1ii1i0in1i1i10i拉格朗日拉格朗日(Lagrange)插值插值8拉格朗日拉格朗日(Lagrange)插值插值特別地特別地:兩點(diǎn)一次

4、兩點(diǎn)一次(線性線性)插值多項(xiàng)式插值多項(xiàng)式: 101001011yxxxxyxxxxxL三點(diǎn)二次三點(diǎn)二次(拋物拋物)插值多項(xiàng)式插值多項(xiàng)式: 2120210121012002010212yxxxxxxxxyxxxxxxxxyxxxxxxxxxL .,滿足插值條件直接驗(yàn)證可知xLn9 拉格朗日多項(xiàng)式插值的這種振蕩現(xiàn)象叫 Runge現(xiàn)象現(xiàn)象55,11)(2xxxg 采用拉格朗日多項(xiàng)式插值:選取不同插值節(jié)點(diǎn)個(gè)數(shù)n+1,其中n為插值多項(xiàng)式的次數(shù),當(dāng)n分別取2,4,6,8,10時(shí),繪出插值結(jié)果圖形.例例返回返回To MatlabTo Matlablch(larg1)lch(larg1)function y=

5、lagrange(x0,y0,x)ii=1:length(x0); y=zeros(size(x);for i=ii ij=find(ii=i); y1=1; for j=1:length(ij), y1=y1.*(x-x0(ij(j); end y=y+y1*y0(i)/prod(x0(i)-x0(ij);end 算例:給出f(x)=ln(x)的數(shù)值表,用Lagrange計(jì)算ln(0.54)的近似值。 x=0.4:0.1:0.8; y=-0.916291,-0.693147,-0.510826,-0.356675,-0.223144; lagrange(x,y,0.54)ans = -0.6

6、161 (精確解-0.616143)11( )()nnjkkjkjj kxxy xyxxRungeRunge現(xiàn)象現(xiàn)象問題的提出:根據(jù)區(qū)間a,b上給出的節(jié)點(diǎn)做插值多項(xiàng)式p(x)的近似值,一般總認(rèn)為p(x)的次數(shù)越高則逼近f(x)的精度就越好,但事實(shí)并非如此。 反例: 在區(qū)間-5,5上的各階導(dǎo)數(shù)存在,但在此區(qū)間上取n個(gè)節(jié)點(diǎn)所構(gòu)成的Lagrange插值多項(xiàng)式在全區(qū)間內(nèi)并非都收斂。 取n=10,用Lagrange插值法進(jìn)行插值計(jì)算。21()1fxx x=-5:1:5; y=1./(1+x.2); x0=-5:0.1:5; y0=lagrange(x,y,x0); y1=1./(1+x0.2);繪制圖形

7、 plot(x0,y0,-r)插值曲線 hold on plot(x0,y1,-b)原曲線13分段線性插值分段線性插值其它,0,)()()(1111110jjjjjjjjjjjnjjjnxxxxxxxxxxxxxxxlxlyxL計(jì)算量與n無關(guān);n越大,誤差越小.nnnxxxxgxL0),()(limxjxj-1xj+1x0 xnxoy14To MATLABExam_1.m返回返回66,11)(2xxxg例例用分段線性插值法求插值用分段線性插值法求插值,并觀察插值誤差并觀察插值誤差.1.在在-6,6中平均選取中平均選取5個(gè)點(diǎn)作插值個(gè)點(diǎn)作插值(xch11)4.在在-6,6中平均選取中平均選取41個(gè)

8、點(diǎn)作插值個(gè)點(diǎn)作插值(xch14)2.在在-6,6中平均選取中平均選取11個(gè)點(diǎn)作插值個(gè)點(diǎn)作插值(xch12)3.在在-6,6中平均選取中平均選取21個(gè)點(diǎn)作插值個(gè)點(diǎn)作插值(xch13)15比分段線性插值更光滑。比分段線性插值更光滑。xyxi-1 xiab 在數(shù)學(xué)上,光滑程度的定量描述是:函數(shù)(曲線)的k階導(dǎo)數(shù)存在且連續(xù),則稱該曲線具有k階光滑性。 光滑性的階次越高,則越光滑。是否存在較低次的分段多項(xiàng)式達(dá)到較高階光滑性的方法?三次樣條插值就是一個(gè)很好的例子。三次樣條插值三次樣條插值16 三次樣條插值, 1,),()(1nixxxxsxSiii,)()3), 1 ,0()()2), 1()()1022

9、3niiiiiiixxCxSniyxSnidxcxbxaxs) 1, 1()()(),()(),()(111 nixsxsxsxsxsxsiiiiiiiiiiii自然邊界條件)(0)()()40 nxSxS)(,)4)3)2xSdcbaiiii)()(limxgxSng g( (x x) )為被插值函數(shù)為被插值函數(shù)。17例例66,11)(2xxxg用三次樣條插值選取用三次樣條插值選取11個(gè)基點(diǎn)計(jì)算插值個(gè)基點(diǎn)計(jì)算插值(ych)返回返回To MATLABExam_118用用MATLABMATLAB作插值計(jì)算作插值計(jì)算一維插值函數(shù):一維插值函數(shù):yi=interp1(x,y,xi,method)插值

10、方法插值方法被插值點(diǎn)被插值點(diǎn)插值節(jié)點(diǎn)插值節(jié)點(diǎn)xixi處的插處的插值結(jié)果值結(jié)果nearest :最鄰近插值:最鄰近插值linear : 線性插值;線性插值;spline : 三次樣條插三次樣條插值;值;cubic : 立方插值。立方插值。缺省時(shí):缺省時(shí): 分段線性插值。分段線性插值。 注意:所有的插值方法都要求注意:所有的插值方法都要求x x是單調(diào)的,并且是單調(diào)的,并且xi不不能夠超過能夠超過x的范圍。的范圍。19 例:在例:在1-121-12的的1111小時(shí)內(nèi),每隔小時(shí)內(nèi),每隔1 1小時(shí)測量一次小時(shí)測量一次溫度,測得的溫度依次為:溫度,測得的溫度依次為:5 5,8 8,9 9,1515,252

11、5,2929,3131,3030,2222,2525,2727,2424。試估計(jì)每隔。試估計(jì)每隔1/101/10小時(shí)的小時(shí)的溫度值。溫度值。To MATLAB(temp)hours=1:12;temps=5 8 9 15 25 29 31 30 22 25 27 24;h=1:0.1:12;t=interp1(hours,temps,h,spline); % (直接輸出數(shù)據(jù)將是很多的)plot(hours,temps,+,h,t,hours,temps,r:) %作圖xlabel(Hour),ylabel(Degrees Celsius)20 xy機(jī)翼下輪廓線例例 已知飛機(jī)下輪廓線上數(shù)據(jù)如下,

12、求已知飛機(jī)下輪廓線上數(shù)據(jù)如下,求x每改變每改變0.1時(shí)的時(shí)的y值。值。To MATLABExam_2返回返回21二維插值的定義二維插值的定義 xyO O第一種(網(wǎng)格節(jié)點(diǎn)):第一種(網(wǎng)格節(jié)點(diǎn)):22 已知已知 m n個(gè)節(jié)點(diǎn)個(gè)節(jié)點(diǎn) ),2 , 1;,.,2 , 1(),(njmizyxijji 其中其中jiyx ,互不相同,不妨設(shè)互不相同,不妨設(shè)bxxxam 21dyyycn 21 構(gòu)造一個(gè)二元函數(shù)構(gòu)造一個(gè)二元函數(shù)),(yxfz 通過全部已知節(jié)點(diǎn)通過全部已知節(jié)點(diǎn),即即再用再用),(yxf計(jì)算插值,即計(jì)算插值,即).,(*yxfz ),1 ,0;,1 ,0(),(njmizyxfijji 23第二種

13、(散亂節(jié)點(diǎn)):第二種(散亂節(jié)點(diǎn)): yx0 024已知已知n個(gè)節(jié)點(diǎn)個(gè)節(jié)點(diǎn)),.,2 , 1(),(nizyxiii 其中其中),(iiyx互不相同,互不相同, 構(gòu)造一個(gè)二元函數(shù)構(gòu)造一個(gè)二元函數(shù)),(yxfz 通過全部已知節(jié)點(diǎn)通過全部已知節(jié)點(diǎn),即即),1 ,0(),(nizyxfiii 再用再用),(yxf計(jì)算插值,即計(jì)算插值,即).,(*yxfz 返回返回25 注意:注意:最鄰近插值一般不連續(xù)。具有連續(xù)性的最簡單的插值是分片線性插值。最鄰近插值最鄰近插值x y(x1, y1)(x1, y2)(x2, y1)(x2, y2)O O 二維或高維情形的最鄰近插值,與被插值點(diǎn)最鄰近的節(jié)點(diǎn)的函數(shù)值即為所

14、求。返回返回26 將四個(gè)插值點(diǎn)(矩形的四個(gè)頂點(diǎn))處的函數(shù)值依次簡記為: 分片線性插值分片線性插值xy (xi, yj)(xi, yj+1)(xi+1, yj)(xi+1, yj+1)O Of (xi, yj)=f1,f (xi+1, yj)=f2,f (xi+1, yj+1)=f3,f (xi, yj+1)=f427插值函數(shù)為:jii1ij1jy)xx(xxyyy)yy)(ff ()xx)(ff (f)y, x(fj23i121第二片(上三角形區(qū)域):(x, y)滿足iii1ij1jy)xx(xxyyy插值函數(shù)為:)xx)(ff ()yy)(ff (f)y, x(fi43j141注意注意:(x

15、, y)當(dāng)然應(yīng)該是在插值節(jié)點(diǎn)所形成的矩形區(qū)域內(nèi)。顯然,分片線性插值函數(shù)是連續(xù)的;分兩片的函數(shù)表達(dá)式如下:第一片(下三角形區(qū)域): (x, y)滿足返回返回28 雙線性插值是一片一片的空間二次曲面構(gòu)成。雙線性插值函數(shù)的形式如下:)dcy)(bax()y, x(f其中有四個(gè)待定系數(shù),利用該函數(shù)在矩形的四個(gè)頂點(diǎn)(插值節(jié)點(diǎn))的函數(shù)值,得到四個(gè)代數(shù)方程,正好確定四個(gè)系數(shù)。雙線性插值雙線性插值x y(x1, y1)(x1, y2)(x2, y1)(x2, y2)O O返回返回29 要求要求x0,y0 x0,y0單調(diào);單調(diào);x x,y y可取可取為矩陣,或?yàn)榫仃?,或x x取取行向量,行向量,y y取為列向量

16、,取為列向量,x,yx,y的值分別不能超出的值分別不能超出x0,y0 x0,y0的范圍。的范圍。z=interp2(x0,y0,z0,x,y,method)被插值點(diǎn)插值方法用用MATLAB作網(wǎng)格節(jié)點(diǎn)數(shù)據(jù)的插值作網(wǎng)格節(jié)點(diǎn)數(shù)據(jù)的插值插值節(jié)點(diǎn)被插值點(diǎn)的函數(shù)值nearestnearest 最鄰近插值最鄰近插值linearlinear 雙線性插值雙線性插值cubiccubic 雙三次插值雙三次插值缺省時(shí)缺省時(shí), , 雙線性插值雙線性插值30例:測得平板表面例:測得平板表面3 3* *5 5網(wǎng)格點(diǎn)處的溫度分別為:網(wǎng)格點(diǎn)處的溫度分別為: 82 81 80 82 84 82 81 80 82 84 79 63

17、 61 65 81 79 63 61 65 81 84 84 82 85 86 84 84 82 85 86 試作出平板表面的溫度分布曲面試作出平板表面的溫度分布曲面z=f(x,y)z=f(x,y)的圖形。的圖形。輸入以下命令:x=1:5;y=1:3;temps=82 81 80 82 84;79 63 61 65 81;84 84 82 85 86;mesh(x,y,temps)1.先在三維坐標(biāo)畫出原始數(shù)據(jù),畫出粗糙的溫度分布曲圖.2以平滑數(shù)據(jù),在x、y方向上每隔0.2個(gè)單位的地方進(jìn)行插值.31再輸入以下命令:xi=1:0.2:5;yi=1:0.2:3;zi=interp2(x,y,temp

18、s,xi,yi,cubic);mesh(xi,yi,zi)畫出插值后的溫度分布曲面圖. To MATLABExam_332To MATLAB exam_5返回返回33 插值函數(shù)插值函數(shù)griddata格式為格式為: cz =griddata(x,y,z,cx,cy,method)用用MATLABMATLAB作散點(diǎn)數(shù)據(jù)的插值計(jì)算作散點(diǎn)數(shù)據(jù)的插值計(jì)算 要求要求cxcx取行向量,取行向量,cycy取為列向量取為列向量。被插值點(diǎn)插值方法插值節(jié)點(diǎn)被插值點(diǎn)的函數(shù)值nearestnearest 最鄰近插值最鄰近插值linearlinear 雙線性插值雙線性插值cubiccubic 雙三次插值雙三次插值v4-

19、 Matlab提供的插值方法提供的插值方法缺省時(shí)缺省時(shí), , 雙線性插值雙線性插值34To MATLAB exam_6返回返回35作業(yè)作業(yè)1 1:在某海域測得一些點(diǎn):在某海域測得一些點(diǎn)(x,y)(x,y)處的水深處的水深z z由下由下表給出,船的吃水深度為表給出,船的吃水深度為5 5英尺,在矩形區(qū)域(英尺,在矩形區(qū)域(7575,200200)* *(-50-50,150150)里的哪些地方船要避免進(jìn)入。)里的哪些地方船要避免進(jìn)入。xyz129 140 103.5 88 185.5 195 1057.5 141.5 23 147 22.5 137.5 85.54 8 6 8 6 8 8xyz157.5 107.5 77 81 162 162 117.5-6.5 -81 3 56.5 -66.5 84 -33.59 9 8 8 9 4 936 ) 1( .150,50200,75. 2hd三次插值法作二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論