向量與空間解析幾何練習(xí)題_第1頁(yè)
向量與空間解析幾何練習(xí)題_第2頁(yè)
向量與空間解析幾何練習(xí)題_第3頁(yè)
向量與空間解析幾何練習(xí)題_第4頁(yè)
向量與空間解析幾何練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、題型1.向量的線性運(yùn)算(三角形法則、平行四邊形法則);向量的坐標(biāo)運(yùn)算2.向量的平行、垂直以及它們之間的夾角、向量的投影3.向量的數(shù)量積(點(diǎn)積);向量的向量積(叉積)4直線方程、平面方程5.曲線方程、曲面方程內(nèi)容一向量的概念及其運(yùn)算1.向量的概念 6.數(shù)乘向量2.向量的模 7.向量的數(shù)量積3.單位向量 8.向量的向量積4.方向角 9.向量的混合積5.向量的加減運(yùn)算 10.向量之間的關(guān)系二平面與直線1.平面方程2.直線方程3.平面束4.兩平面的位置關(guān)系5.平面與直線的位置關(guān)系6.兩直線的位置關(guān)系7.點(diǎn)到平面的距離三曲面方程1.球面方程2.柱面方程3.旋轉(zhuǎn)方程4.錐面5.其他二次曲面四空間曲線方程1

2、.空間曲線的一般方程(面交式)2.空間曲線的參數(shù)方程3.空間曲線在平面上的投影方程典型例題向量I 向量的概念與運(yùn)算向量II 平面與直線方程向量III 曲面與空間曲線方程自測(cè)題七綜合題與方法相結(jié)合4月6日向量練習(xí)題基礎(chǔ)題:1. 已知A(1,0,2), B(1,2,1)是空間兩點(diǎn),向量的模是:( )A ) B) C) 6 D)92. 設(shè)a=1,-1,3, b=2,-1,2,求c=3a-2b是:( )A )-1,1,5. B) -1,-1,5. C) 1,-1,5. D)-1,-1,6.3. 設(shè)a=1,-1,3, b=2,-1,2,求用標(biāo)準(zhǔn)基i, j, k表示向量c;A )-i-2j+5k B)-i

3、-j+3k C)-i-j+5k D)-2i-j+5k4. 一質(zhì)點(diǎn)在力F=3i+4j+5k的作用下,從點(diǎn)A(1,2,0)移動(dòng)到點(diǎn)B(3, 2,-1),求力F所作的功是:( )A )5焦耳 B)10焦耳 C)3焦耳 D)9焦耳5. 已知空間三點(diǎn)M(1,1,1)、A(2,2,1)和B(2,1,2),求AMB是:( )A ) B) C) D)6. 設(shè)求是:( )A )-i-2j+5k B)-i-j+3k C)-i-j+5k D)3i-3j+3k7. 設(shè)的頂點(diǎn)為,求三角形的面積是:( )A ) B) C) D)38.點(diǎn)P(-3,2,-1)關(guān)于平面XOY的對(duì)稱點(diǎn)是_,關(guān)于平面YOZ的對(duì)稱點(diǎn)是_,關(guān)于平面Z

4、OX的對(duì)稱點(diǎn)是_,關(guān)于X軸的對(duì)稱點(diǎn)是_,關(guān)于Y軸的對(duì)稱點(diǎn)是_,關(guān)于Z軸的對(duì)稱點(diǎn)是_。9.設(shè),問(wèn)滿足_時(shí),10. 平行于向量的單位向量為_.11.設(shè)向量的模是4,它與軸的夾角是,則它在軸上的投影為_。12.已知A(4,0,5),B(7,1,3),則_ _。13.已知,問(wèn)時(shí),與相互垂直。14.已知,則15已知與垂直,且則16向量?jī)蓛纱怪?,且,則的長(zhǎng)度為_.綜合題17.設(shè),求向量在x軸上的投影,及在y軸上的分向量.18.設(shè),求(1)(3)a、b的夾角的余弦.19.知,求與同時(shí)垂直的單位向量.20.已知和為兩非零向量,問(wèn)取何值時(shí),向量模最小?并證明此時(shí).21.已知平行四邊形ABCD的兩個(gè)頂點(diǎn)A(2,-

5、3,-5),B(-1,3,2)及它的對(duì)角線的交點(diǎn)E(4,-1,7),求頂點(diǎn)C、D的坐標(biāo)。22.設(shè),求向量在軸上的投影以及在軸上的分向量23.已知A(1,-1,2),B(5,-6,2),C(1,3,-1),求:(1)同時(shí)與及垂直的單位向量;(2)ABC的面積;(3)從頂點(diǎn)A到邊BC的高的長(zhǎng)度4月7日向量練習(xí)題基礎(chǔ)題1. 求平行于軸,且過(guò)點(diǎn)和的平面方程是:( )A)2x+3y=5=0 B)x-y+1=0 C)x+y+1=0 D)2. 求點(diǎn)到直線L:的距離是:( )A ) B C) D)3.填空題 (1)過(guò)點(diǎn)(3,0,-1)且與平面平行的平面方程為_. (2)過(guò)兩點(diǎn)(4,0,-2)和(5,1,7)且

6、平行于軸的平面方程為_. (3)若平面與平面互相垂直,則充要條件是_若上兩平面互相平行,則充要條件是_. (4)設(shè)平面,若過(guò)點(diǎn),則_;又若與平面垂直,則_. (5)一平面過(guò)點(diǎn)(6,-10,1),它在軸上的截距為,在軸上的截距為2,則該平面方程是_ (6)一平面與及都垂直,則該平面法向量為_.(1)過(guò)點(diǎn)(4,-1,3)且平行于直線的直線方程為_ (7)過(guò)兩點(diǎn)(3,-2,1)和(-1,0,2)的直線方程為_ (8)過(guò)點(diǎn)(2,0,-3)與直線垂直的平面方程為_ (9)直線和平面的交點(diǎn)是_4.分別按下列條件求平面方程:(1)平行于XOZ平面且通過(guò)點(diǎn)(2,-5,3);(2)平行于軸且經(jīng)過(guò)點(diǎn)(4,0,-2

7、),(5,1,7);(3)過(guò)點(diǎn)(-3,1,-2)和Z軸.5.求過(guò)點(diǎn)(1,1,1)和點(diǎn)(0,1,-1)且與平面相垂直的平面方程。6.求點(diǎn)(1,-4,5)到平面的距離。7.已知平面與平面,求平分和夾角的平面方程。 8.求滿足下列條件的直線方程: (1)過(guò)點(diǎn)(4,-1,3)且平行于直線. (2)過(guò)點(diǎn)(0,2,4)且同時(shí)平行于平面和. (3)過(guò)點(diǎn)且垂直于平面. 9.求點(diǎn)(3,-1,2)到直線的距離.10.求過(guò)軸,且與平面的夾角為的平面方程.11.求過(guò)點(diǎn)(1,1,-1),且平行于向量a=(2,1,1)和b=(1,-1,0)的平面方程.12.過(guò)且平行于平面又與直線相交的直線方程13.求過(guò)直線,且與直線:平

8、行的平面.14.求直線與平面的夾角.4月8日向量練習(xí)題基礎(chǔ)題:1、以點(diǎn)(1,3,-2)為球心,且通過(guò)坐標(biāo)原點(diǎn)的球面方程為_.2、方程表示_曲面.3、1)將xOy坐標(biāo)面上的繞x軸旋轉(zhuǎn)一周,生成的曲面方程為 _,曲面名稱為_.2)將xOy坐標(biāo)面上的繞x軸旋轉(zhuǎn)一周,生成的曲面方程 _,曲面名稱為_.3)將xOy坐標(biāo)面上的繞x軸及y軸旋轉(zhuǎn)一周,生成的曲面方程為_,曲面名稱為_. 4)在平面解析幾何中表示_圖形。在空間解析幾何中表示_圖形.4.將坐標(biāo)面上的圓繞軸旋轉(zhuǎn)一周所生成的球面方程是_,且球心坐標(biāo)是_,半徑為_5.方程在平面解析幾何中表示_,在空間解析幾何中表示_。6.以點(diǎn)(1,2,3)為球心,且過(guò)點(diǎn)(0,0,1)的球面方程是_7.在空間直角坐標(biāo)系中方程表示_8.曲面

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論