版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、小升初數(shù)學復習重點 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 最佳答案 體積和表面積 三角形的面積底×高÷2。 公式 S= a×h÷2 正方形的面積邊長×邊長 公式 S= a2 長方形的面積長×寬 公式 S= a×b 平行四邊形的面積底×高 公式 S= a×h 梯形的面積(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和180度。 長方體的
2、表面積(長×寬長×高寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2 正方體的表面積棱長×棱長×6 公式: S=6a2 長方體的體積長×寬×高 公式:V = abh 長方體(或正方體)的體積底面積×高 公式:V = abh 正方體的體積棱長×棱長×棱長 公式:V = a3 圓的周長直徑× 公式:Ld2r 圓的面積半徑×半徑× 公式:Sr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=
3、ch=dh2rh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2r2 圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh 圓錐的體積1/3底面×積高。公式:V=1/3Sh 算術 1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。 2、加法結合律:a + b = b + a 3、乘法交換律:a × b = b × a 4、乘法結合律:a × b × c = a ×(b × c) 5、乘法分配律:a × b + a × c = a × b + c
4、6、除法的性質:a ÷ b ÷ c = a ÷(b × c) 7、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 8、有余數(shù)的除法: 被除數(shù)商×除數(shù)+余數(shù) 方程、代數(shù)與等式 等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。 方程式:含有未知數(shù)的等式叫方程式。 一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次
5、數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。 代數(shù): 代數(shù)就是用字母代替數(shù)。 代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c 分數(shù) 分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。 分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。 分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。 分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為
6、分母。 分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。 分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小 分數(shù)的除法則:除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。 分數(shù)的基本性質:
7、分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。 數(shù)量關系計算公式 單價×數(shù)量總價 2、單產量×數(shù)量總產量 速度×時間路程 4、工效×時間工作總量 加數(shù)+加數(shù)和 一個加數(shù)和另一個加數(shù) 被減數(shù)減數(shù)差 減數(shù)被減數(shù)差 被減數(shù)減數(shù)差 因數(shù)×因數(shù)積 一個因數(shù)積÷另一個因數(shù) 被除數(shù)÷除數(shù)商 除數(shù)被除數(shù)÷商 被除數(shù)商×除數(shù) 長度單位: 1公里1千米 1千米1000米 1米10分米 1分米10厘米 1厘米10毫米 面積單位: 1平方千米100公頃 1公頃10000平方米 1平方米100平方分米 1平方分
8、米100平方厘米 1平方厘米100平方毫米 1畝666.666平方米。 體積單位 1立方米1000立方分米 1立方分米1000立方厘米 1立方厘米1000立方毫米 1升1立方分米1000毫升 1毫升1立方厘米 重量單位 1噸1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。 什么叫比例:表示兩個比相等的式子叫做比例。如3:69:18 比例的基本性質:在比例里,兩外項之積等于兩內項之積。 解比例:求比例中的未知項,叫做解比例。如3:9:18 正比例:
9、兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y 反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y 百分數(shù) 百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。 把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。其實,把小數(shù)化成百分數(shù),只要把這個小數(shù)
10、乘以100就行了。把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。其實,把分數(shù)化成百分數(shù),要先把分數(shù)化成小數(shù)后,再乘以100就行了。 把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 要學會把小數(shù)化成分數(shù)和把分數(shù)化成小數(shù)的化發(fā)。 倍數(shù)與約數(shù) 最大公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中最大的一個叫做這幾個數(shù)的最大公約數(shù)。 最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。 互質數(shù): 公約數(shù)
11、只有1的兩個數(shù),叫做互質數(shù)。相臨的兩個數(shù)一定互質。兩個連續(xù)奇數(shù)一定互質。1和任何數(shù)互質。 通分:把異分母分數(shù)的分別化成和原來分數(shù)相等的同分母的分數(shù),叫做通分。(通分用最小公倍數(shù)) 約分:把一個分數(shù)的分子、分母同時除以公約數(shù),分數(shù)值不變,這個過程叫約分。 最簡分數(shù):分子、分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。分數(shù)計算到最后,得數(shù)必須化成最簡分數(shù)。 質數(shù)(素數(shù)):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù))。 合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。 質因數(shù):如果一個質數(shù)是某個數(shù)的因數(shù),那么這個質數(shù)就是這個數(shù)的質因數(shù)。 分解質因數(shù):把一
12、個合數(shù)用質因數(shù)相成的方式表示出來叫做分解質因數(shù)。 倍數(shù)特征: 2的倍數(shù)的特征:各位是0,2,4,6,8。 3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。 5的倍數(shù)的特征:各位是0,5。 4(或25)的倍數(shù)的特征:末2位是4(或25)的倍數(shù)。 8(或125)的倍數(shù)的特征:末3位是8(或125)的倍數(shù)。 7(11或13)的倍數(shù)的特征:末3位與其余各位之差(大-?。┦?(11或13)的倍數(shù)。 17(或59)的倍數(shù)的特征:末3位與其余各位3倍之差(大-小)是17(或59)的倍數(shù)。 19(或53)的倍數(shù)的特征:末3位與其余各位7倍之差(大-小)是19(或53)的倍數(shù)。 23(或29)的倍
13、數(shù)的特征:末4位與其余各位5倍之差(大-?。┦?3(或29)的倍數(shù)。 倍數(shù)關系的兩個數(shù),最大公約數(shù)為較小數(shù),最小公倍數(shù)為較大數(shù)。 互質關系的兩個數(shù),最大公約數(shù)為1,最小公倍數(shù)為乘積。 兩個數(shù)分別除以他們的最大公約數(shù),所得商互質。 兩個數(shù)的與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。 兩個數(shù)的公約數(shù)一定是這兩個數(shù)最大公約數(shù)的約數(shù)。 1既不是質數(shù)也不是合數(shù)。 用6去除大于3的質數(shù),結果一定是1或5。 奇數(shù)與偶數(shù) 偶數(shù):個位是0,2,4,6,8的數(shù)。 奇數(shù):個位不是0,2,4,6,8的數(shù)。 偶數(shù)±偶數(shù)偶數(shù) 奇數(shù)±奇數(shù)奇數(shù) 奇數(shù)±偶數(shù)奇數(shù) 偶數(shù)個偶數(shù)相加是偶數(shù),奇數(shù)個奇數(shù)相加是
14、奇數(shù)。 偶數(shù)×偶數(shù)偶數(shù) 奇數(shù)×奇數(shù)奇數(shù) 奇數(shù)×偶數(shù)偶數(shù) 相臨兩個自然數(shù)之和為奇數(shù),相臨自然數(shù)之積為偶數(shù)。 如果乘式中有一個數(shù)為偶數(shù),那么乘積一定是偶數(shù)。 奇數(shù)偶數(shù) 整除 如果ca, cb,那么c(a±b) 如果,那么ba, ca 如果ba, ca,且(b,c)=1, 那么bca 如果cb, ba, 那么ca 小數(shù) 自然數(shù):用來表示物體個數(shù)的整數(shù),叫做自然數(shù)。0也是自然數(shù)。 純小數(shù):個位是0的小數(shù)。 帶小數(shù):各位大于0的小數(shù)。 循環(huán)小數(shù):一個小數(shù),從小數(shù)部分的某一位起,一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。如3. 141414 不循
15、環(huán)小數(shù):一個小數(shù),從小數(shù)部分起,沒有一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做不循環(huán)小數(shù)。如3. 141592654 無限循環(huán)小數(shù):一個小數(shù),從小數(shù)部分到無限位數(shù),一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做無限循環(huán)小數(shù)。如3. 141414 無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。如3. 141592654 利潤 利息本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應) 利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做
16、月利率。分享給你的朋友吧:· i貼吧 · 新浪微博· 騰訊微博· QQ空間· 人人網(wǎng)· 豆瓣· MSN對我有幫助 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 體積和表面積 三角形的面積底×高÷2。 公式 S= a×h÷2 正方形的面積邊長×邊長 公式 S= a2
17、長方形的面積長×寬 公式 S= a×b 平行四邊形的面積底×高 公式 S= a×h 梯形的面積(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和180度。 長方體的表面積(長×寬長×高寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2 正方體的表面積棱長×棱長×6 公式: S=6a2 長方體的體積長×寬×高 公式:V = abh 長方體(或正方體)的體積底面積×高
18、公式:V = abh 正方體的體積棱長×棱長×棱長 公式:V = a3 圓的周長直徑× 公式:Ld2r 圓的面積半徑×半徑× 公式:Sr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=dh2rh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2r2 圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh 圓錐的體積1/3底面×積高。公式:V=1/3Sh 算術 1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。 2、加法結合律:a + b = b + a 3、乘
19、法交換律:a × b = b × a 4、乘法結合律:a × b × c = a ×(b × c) 5、乘法分配律:a × b + a × c = a × b + c 6、除法的性質:a ÷ b ÷ c = a ÷(b × c) 7、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 8、有余數(shù)的除法: 被除數(shù)
20、商×除數(shù)+余數(shù) 方程、代數(shù)與等式 等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。 方程式:含有未知數(shù)的等式叫方程式。 一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。 代數(shù): 代數(shù)就是用字母代替數(shù)。 代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c 分數(shù) 分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。 分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先
21、通分然后再比較;若分子相同,分母大的反而小。 分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。 分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。 分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。 分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),
22、分數(shù)的大小 分數(shù)的除法則:除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。 數(shù)量關系計算公式 單價×數(shù)量總價 2、單產量×數(shù)量總產量 速度×時間路程 4、工效×時間工作總量 加數(shù)+加數(shù)和 一個加數(shù)和另一個加數(shù) 被減數(shù)減數(shù)差 減數(shù)被減數(shù)差 被減數(shù)減數(shù)差 因數(shù)×因數(shù)積 一個因數(shù)積÷另一個因數(shù)
23、被除數(shù)÷除數(shù)商 除數(shù)被除數(shù)÷商 被除數(shù)商×除數(shù) 長度單位: 1公里1千米 1千米1000米 1米10分米 1分米10厘米 1厘米10毫米 面積單位: 1平方千米100公頃 1公頃10000平方米 1平方米100平方分米 1平方分米100平方厘米 1平方厘米100平方毫米 1畝666.666平方米。 體積單位 1立方米1000立方分米 1立方分米1000立方厘米 1立方厘米1000立方毫米 1升1立方分米1000毫升 1毫升1立方厘米 重量單位 1噸1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5
24、或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。 什么叫比例:表示兩個比相等的式子叫做比例。如3:69:18 比例的基本性質:在比例里,兩外項之積等于兩內項之積。 解比例:求比例中的未知項,叫做解比例。如3:9:18 正比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y 反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如
25、:x×y = k( k一定)或k / x = y 百分數(shù) 百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。 把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。其實,把小數(shù)化成百分數(shù),只要把這個小數(shù)乘以100就行了。把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。其實,把分數(shù)化成百分數(shù),要先把分數(shù)化成小數(shù)后,再乘以100就行了。 把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 要學會把小數(shù)化成分數(shù)和把分數(shù)化成小數(shù)
26、的化發(fā)。 倍數(shù)與約數(shù) 最大公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中最大的一個叫做這幾個數(shù)的最大公約數(shù)。 最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。 互質數(shù): 公約數(shù)只有1的兩個數(shù),叫做互質數(shù)。相臨的兩個數(shù)一定互質。兩個連續(xù)奇數(shù)一定互質。1和任何數(shù)互質。 通分:把異分母分數(shù)的分別化成和原來分數(shù)相等的同分母的分數(shù),叫做通分。(通分用最小公倍數(shù)) 約分:把一個分數(shù)的分子、分母同時除以公約數(shù),分數(shù)值不變,這個過程叫約分。 最簡分數(shù):分子、分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。分數(shù)計算到最后,得數(shù)必須化成最簡分數(shù)。
27、 質數(shù)(素數(shù)):一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù))。 合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。 質因數(shù):如果一個質數(shù)是某個數(shù)的因數(shù),那么這個質數(shù)就是這個數(shù)的質因數(shù)。 分解質因數(shù):把一個合數(shù)用質因數(shù)相成的方式表示出來叫做分解質因數(shù)。 倍數(shù)特征: 2的倍數(shù)的特征:各位是0,2,4,6,8。 3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。 5的倍數(shù)的特征:各位是0,5。 4(或25)的倍數(shù)的特征:末2位是4(或25)的倍數(shù)。 8(或125)的倍數(shù)的特征:末3位是8(或125)的倍數(shù)。 7(11或13)的倍數(shù)的
28、特征:末3位與其余各位之差(大-小)是7(11或13)的倍數(shù)。 17(或59)的倍數(shù)的特征:末3位與其余各位3倍之差(大-?。┦?7(或59)的倍數(shù)。 19(或53)的倍數(shù)的特征:末3位與其余各位7倍之差(大-?。┦?9(或53)的倍數(shù)。 23(或29)的倍數(shù)的特征:末4位與其余各位5倍之差(大-?。┦?3(或29)的倍數(shù)。 倍數(shù)關系的兩個數(shù),最大公約數(shù)為較小數(shù),最小公倍數(shù)為較大數(shù)。 互質關系的兩個數(shù),最大公約數(shù)為1,最小公倍數(shù)為乘積。 兩個數(shù)分別除以他們的最大公約數(shù),所得商互質。 兩個數(shù)的與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。 兩個數(shù)的公約數(shù)一定是這兩個數(shù)最大公約數(shù)的約數(shù)。 1既不是質數(shù)也不
29、是合數(shù)。 用6去除大于3的質數(shù),結果一定是1或5。 奇數(shù)與偶數(shù) 偶數(shù):個位是0,2,4,6,8的數(shù)。 奇數(shù):個位不是0,2,4,6,8的數(shù)。 偶數(shù)±偶數(shù)偶數(shù) 奇數(shù)±奇數(shù)奇數(shù) 奇數(shù)±偶數(shù)奇數(shù) 偶數(shù)個偶數(shù)相加是偶數(shù),奇數(shù)個奇數(shù)相加是奇數(shù)。 偶數(shù)×偶數(shù)偶數(shù) 奇數(shù)×奇數(shù)奇數(shù) 奇數(shù)×偶數(shù)偶數(shù) 相臨兩個自然數(shù)之和為奇數(shù),相臨自然數(shù)之積為偶數(shù)。 如果乘式中有一個數(shù)為偶數(shù),那么乘積一定是偶數(shù)。 奇數(shù)偶數(shù) 整除 如果ca, cb,那么c(a±b) 如果,那么ba, ca 如果ba, ca,且(b,c)=1, 那么bca 如果cb, ba, 那
30、么ca 小數(shù) 自然數(shù):用來表示物體個數(shù)的整數(shù),叫做自然數(shù)。0也是自然數(shù)。 純小數(shù):個位是0的小數(shù)。 帶小數(shù):各位大于0的小數(shù)。 循環(huán)小數(shù):一個小數(shù),從小數(shù)部分的某一位起,一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。如3. 141414 不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起,沒有一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做不循環(huán)小數(shù)。如3. 141592654 無限循環(huán)小數(shù):一個小數(shù),從小數(shù)部分到無限位數(shù),一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做無限循環(huán)小數(shù)。如3. 141414 無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷
31、的重復出現(xiàn),這樣的小數(shù)叫做無限不循環(huán)小數(shù)。如3. 141592654 參考資料:瀟瀟丹丹Danny 回答者: 夢幻紫馨百合 | 一級 | 2010-5-29 20:25 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 EMBED Forms.HTML:Hidden.1 體積和表面積 三角形的面積底×高÷2。 公式 S= a×h÷2 正方形的面積邊長×邊長 公式 S= a2 長方形的面積長
32、×寬 公式 S= a×b 平行四邊形的面積底×高 公式 S= a×h 梯形的面積(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和180度。 長方體的表面積(長×寬長×高寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2 正方體的表面積棱長×棱長×6 公式: S=6a2 長方體的體積長×寬×高 公式:V = abh 長方體(或正方體)的體積底面積×高 公式:V =
33、abh 正方體的體積棱長×棱長×棱長 公式:V = a3 圓的周長直徑× 公式:Ld2r 圓的面積半徑×半徑× 公式:Sr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=dh2rh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2r2 圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh 圓錐的體積1/3底面×積高。公式:V=1/3Sh 算術 1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。 2、加法結合律:a + b = b + a 3、乘法交換律:a
34、× b = b × a 4、乘法結合律:a × b × c = a ×(b × c) 5、乘法分配律:a × b + a × c = a × b + c 6、除法的性質:a ÷ b ÷ c = a ÷(b × c) 7、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 8、有余數(shù)的除法: 被除數(shù)商×
35、除數(shù)+余數(shù) 方程、代數(shù)與等式 等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。 方程式:含有未知數(shù)的等式叫方程式。 一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。 代數(shù): 代數(shù)就是用字母代替數(shù)。 代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c 分數(shù) 分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。 分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較
36、;若分子相同,分母大的反而小。 分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。 分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。 分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。 分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小 分
37、數(shù)的除法則:除以一個數(shù)(0除外),等于乘這個數(shù)的倒數(shù)。 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。 數(shù)量關系計算公式 單價×數(shù)量總價 2、單產量×數(shù)量總產量 速度×時間路程 4、工效×時間工作總量 加數(shù)+加數(shù)和 一個加數(shù)和另一個加數(shù) 被減數(shù)減數(shù)差 減數(shù)被減數(shù)差 被減數(shù)減數(shù)差 因數(shù)×因數(shù)積 一個因數(shù)積÷另一個因數(shù) 被除數(shù)
38、7;除數(shù)商 除數(shù)被除數(shù)÷商 被除數(shù)商×除數(shù) 長度單位: 1公里1千米 1千米1000米 1米10分米 1分米10厘米 1厘米10毫米 面積單位: 1平方千米100公頃 1公頃10000平方米 1平方米100平方分米 1平方分米100平方厘米 1平方厘米100平方毫米 1畝666.666平方米。 體積單位 1立方米1000立方分米 1立方分米1000立方厘米 1立方厘米1000立方毫米 1升1立方分米1000毫升 1毫升1立方厘米 重量單位 1噸1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5或3:6或1/
39、3 比的前項和后項同時乘以或除以一個相同的數(shù)(0除外),比值不變。 什么叫比例:表示兩個比相等的式子叫做比例。如3:69:18 比例的基本性質:在比例里,兩外項之積等于兩內項之積。 解比例:求比例中的未知項,叫做解比例。如3:9:18 正比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y 反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×
40、;y = k( k一定)或k / x = y 百分數(shù) 百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。 把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。其實,把小數(shù)化成百分數(shù),只要把這個小數(shù)乘以100就行了。把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。其實,把分數(shù)化成百分數(shù),要先把分數(shù)化成小數(shù)后,再乘以100就行了。 把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 要學會把小數(shù)化成分數(shù)和把分數(shù)化成小數(shù)的化發(fā)。 倍數(shù)
41、與約數(shù) 最大公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中最大的一個叫做這幾個數(shù)的最大公約數(shù)。 最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。 互質數(shù): 公約數(shù)只有1的兩個數(shù),叫做互質數(shù)。相臨的兩個數(shù)一定互質。兩個連續(xù)奇數(shù)一定互質。1和任何數(shù)互質。 通分:把異分母分數(shù)的分別化成和原來分數(shù)相等的同分母的分數(shù),叫做通分。(通分用最小公倍數(shù)) 約分:把一個分數(shù)的分子、分母同時除以公約數(shù),分數(shù)值不變,這個過程叫約分。 最簡分數(shù):分子、分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。分數(shù)計算到最后,得數(shù)必須化成最簡分數(shù)。 質數(shù)(素數(shù))
42、:一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù))。 合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。 質因數(shù):如果一個質數(shù)是某個數(shù)的因數(shù),那么這個質數(shù)就是這個數(shù)的質因數(shù)。 分解質因數(shù):把一個合數(shù)用質因數(shù)相成的方式表示出來叫做分解質因數(shù)。 倍數(shù)特征: 2的倍數(shù)的特征:各位是0,2,4,6,8。 3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。 5的倍數(shù)的特征:各位是0,5。 4(或25)的倍數(shù)的特征:末2位是4(或25)的倍數(shù)。 8(或125)的倍數(shù)的特征:末3位是8(或125)的倍數(shù)。 7(11或13)的倍數(shù)的特征:末3位與
43、其余各位之差(大-小)是7(11或13)的倍數(shù)。 17(或59)的倍數(shù)的特征:末3位與其余各位3倍之差(大-?。┦?7(或59)的倍數(shù)。 19(或53)的倍數(shù)的特征:末3位與其余各位7倍之差(大-?。┦?9(或53)的倍數(shù)。 23(或29)的倍數(shù)的特征:末4位與其余各位5倍之差(大-?。┦?3(或29)的倍數(shù)。 倍數(shù)關系的兩個數(shù),最大公約數(shù)為較小數(shù),最小公倍數(shù)為較大數(shù)。 互質關系的兩個數(shù),最大公約數(shù)為1,最小公倍數(shù)為乘積。 兩個數(shù)分別除以他們的最大公約數(shù),所得商互質。 兩個數(shù)的與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。 兩個數(shù)的公約數(shù)一定是這兩個數(shù)最大公約數(shù)的約數(shù)。 1既不是質數(shù)也不是合數(shù)。 用6
44、去除大于3的質數(shù),結果一定是1或5。 奇數(shù)與偶數(shù) 偶數(shù):個位是0,2,4,6,8的數(shù)。 奇數(shù):個位不是0,2,4,6,8的數(shù)。 偶數(shù)±偶數(shù)偶數(shù) 奇數(shù)±奇數(shù)奇數(shù) 奇數(shù)±偶數(shù)奇數(shù) 偶數(shù)個偶數(shù)相加是偶數(shù),奇數(shù)個奇數(shù)相加是奇數(shù)。 偶數(shù)×偶數(shù)偶數(shù) 奇數(shù)×奇數(shù)奇數(shù) 奇數(shù)×偶數(shù)偶數(shù) 相臨兩個自然數(shù)之和為奇數(shù),相臨自然數(shù)之積為偶數(shù)。 如果乘式中有一個數(shù)為偶數(shù),那么乘積一定是偶數(shù)。 奇數(shù)偶數(shù) 整除 如果ca, cb,那么c(a±b) 如果,那么ba, ca 如果ba, ca,且(b,c)=1, 那么bca 如果cb, ba, 那么ca 小數(shù)
45、自然數(shù):用來表示物體個數(shù)的整數(shù),叫做自然數(shù)。0也是自然數(shù)。 純小數(shù):個位是0的小數(shù)。 帶小數(shù):各位大于0的小數(shù)。 循環(huán)小數(shù):一個小數(shù),從小數(shù)部分的某一位起,一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。如3. 141414 不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起,沒有一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做不循環(huán)小數(shù)。如3. 141592654 無限循環(huán)小數(shù):一個小數(shù),從小數(shù)部分到無限位數(shù),一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這樣的小數(shù)叫做無限循環(huán)小數(shù)。如3. 141414 無限不循環(huán)小數(shù):一個小數(shù),從小數(shù)部分起到無限位數(shù),沒有一個數(shù)字或幾個數(shù)字依次不斷的重復出現(xiàn),這
46、樣的小數(shù)叫做無限不循環(huán)小數(shù)。如3. 141592654 利潤 利息本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應) 利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。 回答者: 丹丹蕭蕭danny - 二級 2010-5-26 21:06 公式 回答者: 218.109.118.* 2010-5-28 18:46 體積和表面積 三角形的面積底×高÷2。 公式 S= a×h÷2 正方形的面積邊長×邊長 公式 S= a2 長方形的面積長×寬 公式 S=
47、a×b 平行四邊形的面積底×高 公式 S= a×h 梯形的面積(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和180度。 長方體的表面積(長×寬長×高寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2 正方體的表面積棱長×棱長×6 公式: S=6a2 長方體的體積長×寬×高 公式:V = abh 長方體(或正方體)的體積底面積×高 公式:V = abh 正方體的體積棱長
48、215;棱長×棱長 公式:V = a3 圓的周長直徑× 公式:Ld2r 圓的面積半徑×半徑× 公式:Sr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=dh2rh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2r2 圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh 圓錐的體積1/3底面×積高。公式:V=1/3Sh 算術 1、加法交換律:兩數(shù)相加交換加數(shù)的位置,和不變。 2、加法結合律:a + b = b + a 3、乘法交換律:a × b = b &
49、#215; a 4、乘法結合律:a × b × c = a ×(b × c) 5、乘法分配律:a × b + a × c = a × b + c 6、除法的性質:a ÷ b ÷ c = a ÷(b × c) 7、除法的性質:在除法里,被除數(shù)和除數(shù)同時擴大(或縮小)相同的倍數(shù),商不變。 O除以任何不是O的數(shù)都得O。 簡便乘法:被乘數(shù)、乘數(shù)末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 8、有余數(shù)的除法: 被除數(shù)商×除數(shù)+余數(shù) 方程、代數(shù)與等式
50、 等式:等號左邊的數(shù)值與等號右邊的數(shù)值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數(shù),等式仍然成立。 方程式:含有未知數(shù)的等式叫方程式。 一元一次方程式:含有一個未知數(shù),并且未知數(shù)的次 數(shù)是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有的算式并計算。 代數(shù): 代數(shù)就是用字母代替數(shù)。 代數(shù)式:用字母表示的式子叫做代數(shù)式。如:3x =ab+c 分數(shù) 分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。 分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小
51、。 分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。 分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。 分數(shù)的加、減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。 倒數(shù)的概念:1.如果兩個數(shù)乘積是1,我們稱一個是另一個的倒數(shù)。這兩個數(shù)互為倒數(shù)。1的倒數(shù)是1,0沒有倒數(shù)。 分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小 分數(shù)的除法則:除以一個數(shù)(0除
52、外),等于乘這個數(shù)的倒數(shù)。 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。 分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。 數(shù)量關系計算公式 單價×數(shù)量總價 2、單產量×數(shù)量總產量 速度×時間路程 4、工效×時間工作總量 加數(shù)+加數(shù)和 一個加數(shù)和另一個加數(shù) 被減數(shù)減數(shù)差 減數(shù)被減數(shù)差 被減數(shù)減數(shù)差 因數(shù)×因數(shù)積 一個因數(shù)積÷另一個因數(shù) 被除數(shù)÷除數(shù)商 除數(shù)被除數(shù)
53、47;商 被除數(shù)商×除數(shù) 長度單位: 1公里1千米 1千米1000米 1米10分米 1分米10厘米 1厘米10毫米 面積單位: 1平方千米100公頃 1公頃10000平方米 1平方米100平方分米 1平方分米100平方厘米 1平方厘米100平方毫米 1畝666.666平方米。 體積單位 1立方米1000立方分米 1立方分米1000立方厘米 1立方厘米1000立方毫米 1升1立方分米1000毫升 1毫升1立方厘米 重量單位 1噸1000千克 1千克= 1000克= 1公斤= 1市斤 比 什么叫比:兩個數(shù)相除就叫做兩個數(shù)的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或
54、除以一個相同的數(shù)(0除外),比值不變。 什么叫比例:表示兩個比相等的式子叫做比例。如3:69:18 比例的基本性質:在比例里,兩外項之積等于兩內項之積。 解比例:求比例中的未知項,叫做解比例。如3:9:18 正比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y 反比例:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k
55、 / x = y 百分數(shù) 百分數(shù):表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。 把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號。其實,把小數(shù)化成百分數(shù),只要把這個小數(shù)乘以100就行了。把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。其實,把分數(shù)化成百分數(shù),要先把分數(shù)化成小數(shù)后,再乘以100就行了。 把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。 要學會把小數(shù)化成分數(shù)和把分數(shù)化成小數(shù)的化發(fā)。 倍數(shù)與約數(shù) 最大公約數(shù):幾個數(shù)公
56、有的約數(shù),叫做這幾個數(shù)的公約數(shù)。公因數(shù)有有限個。其中最大的一個叫做這幾個數(shù)的最大公約數(shù)。 最小公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。公倍數(shù)有無限個。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。 互質數(shù): 公約數(shù)只有1的兩個數(shù),叫做互質數(shù)。相臨的兩個數(shù)一定互質。兩個連續(xù)奇數(shù)一定互質。1和任何數(shù)互質。 通分:把異分母分數(shù)的分別化成和原來分數(shù)相等的同分母的分數(shù),叫做通分。(通分用最小公倍數(shù)) 約分:把一個分數(shù)的分子、分母同時除以公約數(shù),分數(shù)值不變,這個過程叫約分。 最簡分數(shù):分子、分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。分數(shù)計算到最后,得數(shù)必須化成最簡分數(shù)。 質數(shù)(素數(shù)):一個數(shù),如果只有1和它本身
57、兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù))。 合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。 質因數(shù):如果一個質數(shù)是某個數(shù)的因數(shù),那么這個質數(shù)就是這個數(shù)的質因數(shù)。 分解質因數(shù):把一個合數(shù)用質因數(shù)相成的方式表示出來叫做分解質因數(shù)。 倍數(shù)特征: 2的倍數(shù)的特征:各位是0,2,4,6,8。 3(或9)的倍數(shù)的特征:各個數(shù)位上的數(shù)之和是3(或9)的倍數(shù)。 5的倍數(shù)的特征:各位是0,5。 4(或25)的倍數(shù)的特征:末2位是4(或25)的倍數(shù)。 8(或125)的倍數(shù)的特征:末3位是8(或125)的倍數(shù)。 7(11或13)的倍數(shù)的特征:末3位與其余各位之差(大-?。┦?(
58、11或13)的倍數(shù)。 17(或59)的倍數(shù)的特征:末3位與其余各位3倍之差(大-小)是17(或59)的倍數(shù)。 19(或53)的倍數(shù)的特征:末3位與其余各位7倍之差(大-?。┦?9(或53)的倍數(shù)。 23(或29)的倍數(shù)的特征:末4位與其余各位5倍之差(大-?。┦?3(或29)的倍數(shù)。 倍數(shù)關系的兩個數(shù),最大公約數(shù)為較小數(shù),最小公倍數(shù)為較大數(shù)。 互質關系的兩個數(shù),最大公約數(shù)為1,最小公倍數(shù)為乘積。 兩個數(shù)分別除以他們的最大公約數(shù),所得商互質。 兩個數(shù)的與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。 兩個數(shù)的公約數(shù)一定是這兩個數(shù)最大公約數(shù)的約數(shù)。 1既不是質數(shù)也不是合數(shù)。 用6去除大于3的質數(shù),結果一定是1或5。 奇數(shù)與偶數(shù) 偶數(shù):個位是0,2,4,6,8的數(shù)。 奇數(shù):個位不是0,2,4,6,8的數(shù)。 偶數(shù)±偶數(shù)偶數(shù) 奇數(shù)±奇數(shù)奇數(shù) 奇數(shù)±偶數(shù)奇數(shù) 偶數(shù)個偶數(shù)相加
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 細胞呼吸課件教學課件
- 三年級數(shù)學計算題專項練習匯編及答案集錦
- 老年活動項目標前協(xié)議書(2篇)
- 南京航空航天大學《電磁場的數(shù)值方法》2022-2023學年期末試卷
- 南京工業(yè)大學浦江學院《線性代數(shù)(理工)》2021-2022學年第一學期期末試卷
- 分式方程說課稿
- 蹲踞式起跑說課稿
- angengingong說課稿部編版
- 南京工業(yè)大學浦江學院《計算機網(wǎng)絡》2023-2024學年期末試卷
- 黑板字課件教學課件
- 學校校園文化建設協(xié)議書
- 工程機械租賃服務方案及保障措施
- GB/T 13077-2024鋁合金無縫氣瓶定期檢驗與評定
- 有限空間作業(yè)安全承諾書
- 幼兒園預防近視教師培訓
- SY-T 6966-2023 輸油氣管道工程安全儀表系統(tǒng)設計規(guī)范
- 人工智能訓練師(中級數(shù)據(jù)標注員)理論考試題庫大全(含答案)
- 醫(yī)院科室合作共建方案
- 3.1DNA是主要的遺傳物質課件-高一下學期生物人教版必修二
- 小學數(shù)學計算專項訓練之乘法分配律(提公因數(shù))
- 《食物在體內的旅行》說課稿
評論
0/150
提交評論