




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第二章 變化率與導(dǎo)數(shù)課題平均變化率一、教學(xué)目標(biāo)1感受平均變化率廣泛存在于日常生活之中,經(jīng)歷運(yùn)用數(shù)學(xué)描述和刻畫(huà)現(xiàn)實(shí)世界的過(guò)程。體會(huì)數(shù)學(xué)的博大精深以及學(xué)習(xí)數(shù)學(xué)的意義。2理解平均變化率的意義,為后續(xù)建立瞬時(shí)變化率和導(dǎo)數(shù)的數(shù)學(xué)模型提供豐富的背景。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):平均變化率的實(shí)際意義和數(shù)學(xué)意義 難點(diǎn):平均變化率的實(shí)際意義和數(shù)學(xué)意義三、教學(xué)過(guò)程一、問(wèn)題情境1、情境:現(xiàn)有南京市某年3月和4月某天日最高氣溫記載.時(shí)間3月18日4月18日4月20日日最高氣溫3.518.633.4觀察:3月18日到4月18日與4月18日到4月20日的溫度變化,用曲線圖表示為:(理解圖中A、B、C點(diǎn)的坐標(biāo)的含義) t(d)
2、2030342102030A (1, 3.5)B (32, 18.6)0C (34, 33.4)T ()210問(wèn)題1:“氣溫陡增”是一句生活用語(yǔ),它的數(shù)學(xué)意義是什么?(形與數(shù)兩方面)問(wèn)題2:如何量化(數(shù)學(xué)化)曲線上升的陡峭程度?二、學(xué)生活動(dòng)1、曲線上BC之間一段幾乎成了“直線”,由此聯(lián)想如何量化直線的傾斜程度。2、由點(diǎn)B上升到C點(diǎn),必須考察yCyB的大小,但僅僅注意yCyB的大小能否精確量化BC段陡峭程度,為什么?3、在考察yCyB的同時(shí)必須考察xCxB,函數(shù)的本質(zhì)在于一個(gè)量的改變本身就隱含著這種改變必定相對(duì)于另一個(gè)量的改變。三、建構(gòu)數(shù)學(xué)1通過(guò)比較氣溫在區(qū)間1,32上的變化率05與氣溫32,3
3、4上的變化率74,感知曲線陡峭程度的量化。2.一般地,給出函數(shù)f(x)在區(qū)間x1,x2上的平均變化率。3回到氣溫曲線圖中,從數(shù)和形兩方面對(duì)平均變化率進(jìn)行意義建構(gòu)。4。平均變化率量化一段曲線的陡峭程度是“粗糙不精確的”,但應(yīng)注意當(dāng)x2x1很小時(shí),這種量化便有“粗糙”逼近“精確”。四、數(shù)學(xué)運(yùn)用例1、在經(jīng)營(yíng)某商品中,甲掙到10萬(wàn)元,乙掙到2萬(wàn)元,如何比較和評(píng)價(jià)甲,乙兩人的經(jīng)營(yíng)成果?變:在經(jīng)營(yíng)某商品中,甲用5年時(shí)間掙到10萬(wàn)元,乙用5個(gè)月時(shí)間掙到2萬(wàn)元,如何比較和評(píng)價(jià)甲,乙兩人的經(jīng)營(yíng)成果?小結(jié):僅考慮一個(gè)變量的變化是不形的。例2、水經(jīng)過(guò)虹吸管從容器甲中流向容器乙,t s后容器甲中水的體積(單位:),計(jì)
4、算第一個(gè)10s內(nèi)V的平均變化率。注:例3、已知函數(shù),分別計(jì)算在下列區(qū)間上的平均變化率:(1)1,3; (2)1,2;(3)1,1.1;(4)1,1.001。五、課堂練習(xí)1、某嬰兒從出生到第12個(gè)月的體重變化如圖所示,試分別計(jì)算從出生到第3個(gè)月與第6個(gè)月到第12個(gè)月該嬰兒體重的平均變化率。T(月)W(kg)639123.56.58.6112、已知函數(shù)f(x)=2x+1,g(x)=2x,分別計(jì)算在區(qū)間-3,-1,0,5上f(x)及g(x)的平均變化率。(發(fā)現(xiàn):y=kx+b在區(qū)間m,n上的平均變化率有什么特點(diǎn)?)六、回顧反思1、平均變化率 一般的,函數(shù)在區(qū)間x1,x2上的平均變化率。、平均變化率是曲
5、線陡峭程度的“數(shù)量化”,曲線陡峭程度是平均變化率“視覺(jué)化”七、作業(yè)課題:瞬時(shí)變化率導(dǎo)數(shù)教學(xué)目標(biāo):(1)理解并掌握曲線在某一點(diǎn)處的切線的概念 (2)會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度 (3)理解導(dǎo)數(shù)概念 實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力,進(jìn)一步掌握在一點(diǎn)處的導(dǎo)數(shù)的定義及其幾何意義,培養(yǎng)學(xué)生轉(zhuǎn)化問(wèn)題的能力及數(shù)形結(jié)合思想一、復(fù)習(xí)引入1、什么叫做平均變化率;2、曲線上兩點(diǎn)的連線(割線)的斜率與函數(shù)f(x)在區(qū)間xA,xB上的平均變化率3、如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?下面我們來(lái)看一個(gè)動(dòng)畫(huà)。從這個(gè)動(dòng)畫(huà)可以看出,隨著點(diǎn)P沿曲線向點(diǎn)Q運(yùn)動(dòng),隨著點(diǎn)P無(wú)限逼近點(diǎn)Q時(shí),則割
6、線的斜率就會(huì)無(wú)限逼近曲線在點(diǎn)Q處的切線的斜率。所以我們可以用Q點(diǎn)處的切線的斜率來(lái)刻畫(huà)曲線在點(diǎn)Q處的變化趨勢(shì)二、新課講解1、曲線上一點(diǎn)處的切線斜率不妨設(shè)P(x1,f(x1),Q(x0,f(x0),則割線PQ的斜率為,設(shè)x1x0=x,則x1 =xx0, 當(dāng)點(diǎn)P沿著曲線向點(diǎn)Q無(wú)限靠近時(shí),割線PQ的斜率就會(huì)無(wú)限逼近點(diǎn)Q處切線斜率,即當(dāng)x無(wú)限趨近于0時(shí),無(wú)限趨近點(diǎn)Q處切線斜率。2、曲線上任一點(diǎn)(x0,f(x0)切線斜率的求法:,當(dāng)x無(wú)限趨近于0時(shí),k值即為(x0,f(x0)處切線的斜率。3、瞬時(shí)速度與瞬時(shí)加速度(1)平均速度: 物理學(xué)中,運(yùn)動(dòng)物體的位移與所用時(shí)間的比稱(chēng)為平均速度(2)位移的平均變化率:(
7、3)瞬時(shí)速度:當(dāng)無(wú)限趨近于0 時(shí),無(wú)限趨近于一個(gè)常數(shù),這個(gè)常數(shù)稱(chēng)為t=t0時(shí)的瞬時(shí)速度求瞬時(shí)速度的步驟:1.先求時(shí)間改變量和位置改變量2.再求平均速度3.后求瞬時(shí)速度:當(dāng)無(wú)限趨近于0,無(wú)限趨近于常數(shù)v為瞬時(shí)速度(4)速度的平均變化率:(5)瞬時(shí)加速度:當(dāng)無(wú)限趨近于0 時(shí),無(wú)限趨近于一個(gè)常數(shù),這個(gè)常數(shù)稱(chēng)為t=t0時(shí)的瞬時(shí)加速度 注:瞬時(shí)加速度是速度對(duì)于時(shí)間的瞬時(shí)變化率三、數(shù)學(xué)應(yīng)用例1、已知f(x)=x2,求曲線在x=2處的切線的斜率。變式:1.求過(guò)點(diǎn)(1,1)的切線方程2.曲線y=x3在點(diǎn)P處切線斜率為k,當(dāng)k=3時(shí),P點(diǎn)的坐標(biāo)為_(kāi)3.已知曲線上的一點(diǎn)P(0,0)的切線斜率是否存在?例2.一直線
8、運(yùn)動(dòng)的物體,從時(shí)間到時(shí),物體的位移為,那么為( )從時(shí)間到時(shí),物體的平均速度; 在時(shí)刻時(shí)該物體的瞬時(shí)速度; 當(dāng)時(shí)間為時(shí)物體的速度; 從時(shí)間到時(shí)物體的平均速度例3.自由落體運(yùn)動(dòng)的位移s(m)與時(shí)間t(s)的關(guān)系為s=(1)求t=t0s時(shí)的瞬時(shí)速度 (2)求t=3s時(shí)的瞬時(shí)速度 (3)求t=3s時(shí)的瞬時(shí)加速度教后反思:求瞬時(shí)速度,也就轉(zhuǎn)化為求極限,瞬時(shí)速度我們是通過(guò)在一段時(shí)間內(nèi)的平均速度的極限來(lái)定義的,只要知道了物體的運(yùn)動(dòng)方程,代入公式就可以求出瞬時(shí)速度了.運(yùn)用數(shù)學(xué)工具來(lái)解決物理方面的問(wèn)題,是不是方便多了.所以數(shù)學(xué)是用來(lái)解決其他一些學(xué)科,比如物理、化學(xué)等方面問(wèn)題的一種工具,我們這一節(jié)課學(xué)的內(nèi)容以及
9、上一節(jié)課學(xué)的是我們學(xué)習(xí)導(dǎo)數(shù)的一些實(shí)際背景課題:導(dǎo)數(shù)的概念一 教學(xué)目標(biāo)1、 知識(shí)與技能:通過(guò)大量的實(shí)例的分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù)。2、 過(guò)程與方法: 通過(guò)動(dòng)手計(jì)算培養(yǎng)學(xué)生觀察、分析、比較和歸納能力 通過(guò)問(wèn)題的探究體會(huì)逼近、類(lèi)比、以已知探求未知、從特殊到一般的數(shù)學(xué)思想方法3、 情感、態(tài)度與價(jià)值觀: 通過(guò)運(yùn)動(dòng)的觀點(diǎn)體會(huì)導(dǎo)數(shù)的內(nèi)涵,使學(xué)生掌握導(dǎo)數(shù)的概念不再困難,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.二、 重點(diǎn)、難點(diǎn)Ø 重點(diǎn):導(dǎo)數(shù)概念的形成,導(dǎo)數(shù)內(nèi)涵的理解Ø 難點(diǎn):在平均變化率的基礎(chǔ)上去探求瞬時(shí)變化率,深刻理解導(dǎo)數(shù)的內(nèi)涵通過(guò)逼
10、近的方法,引導(dǎo)學(xué)生觀察來(lái)突破難點(diǎn)四、 教學(xué)設(shè)想(具體如下表)教學(xué)環(huán)節(jié)教學(xué)內(nèi)容師生互動(dòng)設(shè)計(jì)思路創(chuàng)設(shè)情景、引入新課幻燈片Ø 回顧上節(jié)課留下的思考題:在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對(duì)水面的高度h(單位:m)與起跳后的時(shí)間t(單位:s)存在函數(shù)關(guān)系h(t)=4.9t 26.5t10.計(jì)算運(yùn)動(dòng)員在這段時(shí)間里的平均速度,并思考下面的問(wèn)題:(1)運(yùn)動(dòng)員在這段時(shí)間里是靜止的嗎?(2)你認(rèn)為用平均速度描述運(yùn)動(dòng)員的運(yùn)動(dòng)狀態(tài)有什么問(wèn)題嗎?首先回顧上節(jié)課留下的思考題:在學(xué)生相互討論,交流結(jié)果的基礎(chǔ)上,提出 :大家得到運(yùn)動(dòng)員在這段時(shí)間內(nèi)的平均速度為“0”,但我們知道運(yùn)動(dòng)員在這段時(shí)間內(nèi)并沒(méi)有“靜止”。為什么會(huì)產(chǎn)生這
11、樣的情況 呢?引起學(xué)生的好奇,意識(shí)到平均速度只能粗略地描述物體在某段時(shí)間內(nèi)的運(yùn)動(dòng)狀態(tài),為了能更精確地刻畫(huà)物體運(yùn)動(dòng),我們有必要研究某個(gè)時(shí)刻的速度即瞬時(shí)速度。使學(xué)生帶著問(wèn)題走進(jìn)課堂,激發(fā)學(xué)生求知欲初步探索、展示內(nèi)涵根據(jù)學(xué)生的認(rèn)知水平,概念的形成分了兩個(gè)層次:Ø 結(jié)合跳水問(wèn)題,明確瞬時(shí)速度的定義問(wèn)題一:請(qǐng)大家思考如何求運(yùn)動(dòng)員的瞬時(shí)速度,如t=2時(shí)刻的瞬時(shí)速度?提出問(wèn)題一,組織學(xué)生討論,引導(dǎo)他們自然地想到選取一個(gè)具體時(shí)刻如t=2,研究它附近的平均速度變化情況來(lái)尋找到問(wèn)題的思路,使抽象問(wèn)題具體化理解導(dǎo)數(shù)的內(nèi)涵是本節(jié)課的教學(xué)重難點(diǎn),通過(guò)層層設(shè)疑,把學(xué)生推向問(wèn)題的中心,讓學(xué)生動(dòng)手操作,直觀感受來(lái)突
12、出重點(diǎn)、突破難點(diǎn)問(wèn)題二:請(qǐng)大家繼續(xù)思考,當(dāng)t取不同值時(shí),嘗試計(jì)算的值?tt-0.10.1-0.010.01-0.0010.001-0.00010.0001-0.000010.00001.學(xué)生對(duì)概念的認(rèn)知需要借助大量的直觀數(shù)據(jù),所以我讓學(xué)生利用計(jì)算器,分組完成問(wèn)題二,幫助學(xué)生體會(huì)從平均速度出發(fā),“以已知探求未知”的數(shù)學(xué)思想方法, 培養(yǎng)學(xué)生的動(dòng)手操作能力問(wèn)題三:當(dāng)t趨于0時(shí),平均速度有怎樣的變化趨勢(shì)?tt-0.1-12.610.1-13.59-0.01-13.0510.01-13.149-0.001-13.09510.001-13.1049-0.0001-130099510.0001-13.100
13、49-0.00001-13.0999510.00001-13.100049.一方面分組討論,上臺(tái)板演,展示計(jì)算結(jié)果,同時(shí)口答:在t=2時(shí)刻,t趨于0時(shí),平均速度趨于一個(gè)確定的值-13.1,即瞬時(shí)速度,第一次體會(huì)逼近思想;另一方面借助動(dòng)畫(huà)多渠道地引導(dǎo)學(xué)生觀察、分析、比較、歸納,第二次體會(huì)逼近思想,為了表述方便,數(shù)學(xué)中用簡(jiǎn)潔的符號(hào)來(lái)表示,即數(shù)形結(jié)合,掃清了學(xué)生的思維障礙,更好地突破了教學(xué)的重難點(diǎn),體驗(yàn)數(shù)學(xué)的簡(jiǎn)約美問(wèn)題四:運(yùn)動(dòng)員在某個(gè)時(shí)刻的瞬時(shí)速度如何表示呢?引導(dǎo)學(xué)生繼續(xù)思考:運(yùn)動(dòng)員在某個(gè)時(shí)刻的瞬時(shí)速度如何表示? 學(xué)生意識(shí)到將代替2,可類(lèi)比得到與舊教材相比,這里不提及極限概念,而是通過(guò)形象生動(dòng)的逼近
14、思想來(lái)定義時(shí)刻的瞬時(shí)速度,更符合學(xué)生的認(rèn)知規(guī)律,提高了他們的思維能力,體現(xiàn)了特殊到一般的思維方法Ø 借助其它實(shí)例,抽象導(dǎo)數(shù)的概念問(wèn)題五:氣球在體積時(shí)的瞬時(shí)膨脹率如何表示呢?類(lèi)比之前學(xué)習(xí)的瞬時(shí)速度問(wèn)題,引導(dǎo)學(xué)生得到瞬時(shí)膨脹率的表示積極的師生互動(dòng)能幫助學(xué)生看到知識(shí)點(diǎn)之間的聯(lián)系,有助于知識(shí)的重組和遷移,尋找不同實(shí)際背景下的數(shù)學(xué)共性,即對(duì)于不同實(shí)際問(wèn)題,瞬時(shí)變化率富于不同的實(shí)際意義 問(wèn)題六:如果將這兩個(gè)變化率問(wèn)題中的函數(shù)用來(lái)表示,那么函數(shù)在處的瞬時(shí)變化率如何呢?在前面兩個(gè)問(wèn)題的鋪墊下,進(jìn)一步提出,我們這里研究的函數(shù)在處的瞬時(shí)變化率即在
15、處的導(dǎo)數(shù),記作(也可記為)引導(dǎo)學(xué)生舍棄具體問(wèn)題的實(shí)際意義,抽象得到導(dǎo)數(shù)定義,由淺入深、由易到難、由特殊到一般,幫助學(xué)生完成了思維的飛躍;同時(shí)提及導(dǎo)數(shù)產(chǎn)生的時(shí)代背景,讓學(xué)生感受數(shù)學(xué)文化的熏陶,感受數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活。循序漸進(jìn)、延伸拓展例1:將原油精煉為汽油、柴油、塑料等不同產(chǎn)品,需要對(duì)原油進(jìn)行冷卻和加熱。如果在第x h時(shí)候,原油溫度(單位:)為(1)計(jì)算第2h和第6h時(shí),原油溫度的瞬時(shí)變化率,并說(shuō)明它的意義。(2)計(jì)算第3h和第5h時(shí),原油溫度的瞬時(shí)變化率,并說(shuō)明它的意義。步驟: 啟發(fā)學(xué)生根據(jù)導(dǎo)數(shù)定義,再分別求出和既然我們得到了第2h和第6h的原油溫度的瞬時(shí)變化率分別為-3與5,大家能
16、說(shuō)明它的含義嗎?大家是否能用同樣方法來(lái)解決問(wèn)題二?師生共同歸納得到,導(dǎo)數(shù)即瞬時(shí)變化率,可反映物體變化的快慢步步設(shè)問(wèn),引導(dǎo)學(xué)生深入探究導(dǎo)數(shù)內(nèi)涵發(fā)展學(xué)生的應(yīng)用意識(shí),是高中數(shù)學(xué)課程標(biāo)準(zhǔn)所倡導(dǎo)的重要理念之一。在教學(xué)中以具體問(wèn)題為載體,加深學(xué)生對(duì)導(dǎo)數(shù)內(nèi)涵的理解,體驗(yàn)數(shù)學(xué)在實(shí)際生活中的應(yīng)用變式練習(xí):已知一個(gè)物體運(yùn)動(dòng)的位移(m)與時(shí)間t(s)滿足關(guān)系S(t)-2t2+5t(1)求物體第5秒和第6秒的瞬時(shí)速度(2)求物體在t時(shí)刻的瞬時(shí)速度(3)求物體t時(shí)刻運(yùn)動(dòng)的加速度,并判斷物體作什么運(yùn)動(dòng)?學(xué)生獨(dú)立完成,上臺(tái)板演,第三次體會(huì)逼近思想目的是讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去看待物理模型,建立各學(xué)科之間的聯(lián)系,更深刻地把握
17、事物變化的規(guī)律歸納總結(jié)、內(nèi)化知識(shí)1、瞬時(shí)速度的概念2、導(dǎo)數(shù)的概念3、思想方法:“以已知探求未知”、逼近、類(lèi)比、從特殊到一般引導(dǎo)學(xué)生進(jìn)行討論,相互補(bǔ)充后進(jìn)行回答,老師評(píng)析,并用幻燈片給出讓學(xué)生自己小結(jié),不僅僅總結(jié)知識(shí)更重要地是總結(jié)數(shù)學(xué)思想方法。這是一個(gè)重組知識(shí)的過(guò)程,是一個(gè)多維整合的過(guò)程,是一個(gè)高層次的自我認(rèn)識(shí)過(guò)程,這樣可幫助學(xué)生自行構(gòu)建知識(shí)體系,理清知識(shí)脈絡(luò),養(yǎng)成良好的學(xué)習(xí)習(xí)慣作業(yè)安排、板書(shū)設(shè)計(jì)(必做)第10頁(yè)習(xí)題A組第2、3、4 題(選做):思考第11頁(yè)習(xí)題B組第1題作業(yè)是學(xué)生信息的反饋,能在作業(yè)中發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的不足,同時(shí)注重個(gè)體差異,因材施教附后板書(shū)設(shè)計(jì)清楚整潔,便于突出知識(shí)目標(biāo)五、
18、學(xué)法與教法Ø 學(xué)法與教學(xué)用具學(xué)法:(1)合作學(xué)習(xí):引導(dǎo)學(xué)生分組討論,合作交流,共同探討問(wèn)題。(如題2的處理)(2)自主學(xué)習(xí):引導(dǎo)學(xué)生通過(guò)親身經(jīng)歷,動(dòng)口、動(dòng)腦、動(dòng)手參與數(shù)學(xué)活動(dòng)。(如題3的處理)(3)探究學(xué)習(xí):引導(dǎo)學(xué)生發(fā)揮主觀能動(dòng)性,主動(dòng)探索新知。(如例題的處理)教后反思:Ø 教法:整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出動(dòng)師生互動(dòng)、共同探索。導(dǎo)教師指導(dǎo)、循序漸進(jìn)(1) 新課引入提出問(wèn)題, 激發(fā)學(xué)生的求知欲(2) 理解導(dǎo)數(shù)的內(nèi)涵數(shù)形結(jié)合,動(dòng)手計(jì)算,組織學(xué)生自主探索,獲得導(dǎo)數(shù)的定義(3) 例題處理始終從問(wèn)題出發(fā),層層設(shè)疑,讓他們?cè)谔剿髦凶缘弥R(shí)(4) 變式練習(xí)深化對(duì)導(dǎo)數(shù)內(nèi)
19、涵的理解,鞏固新知課題: 導(dǎo)數(shù)的幾何意義教學(xué)目的:1. 了解平均變化率與割線之間的關(guān)系2. 理解曲線的切線的概率3. 通過(guò)函數(shù)的圖像理解導(dǎo)數(shù)的幾何意義教學(xué)重點(diǎn)函數(shù)切線的概念,切線的斜率,導(dǎo)數(shù)的幾何意義教學(xué)難點(diǎn)理解導(dǎo)數(shù)的幾何意義教學(xué)過(guò)程練習(xí)練習(xí)注意作業(yè):習(xí)案作業(yè)三教后反思:課題:常見(jiàn)函數(shù)的導(dǎo)數(shù)一、教學(xué)目標(biāo):掌握初等函數(shù)的求導(dǎo)公式;二、教學(xué)重難點(diǎn):用定義推導(dǎo)常見(jiàn)函數(shù)的導(dǎo)數(shù)公式一、復(fù)習(xí)1、導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的流程圖。(1)求函數(shù)的改變量(2)求平均變化率(3)取極限,得導(dǎo)數(shù)本節(jié)課我們將學(xué)習(xí)常見(jiàn)函數(shù)的導(dǎo)數(shù)。首先我們來(lái)求下面幾個(gè)函數(shù)的導(dǎo)數(shù)。(1)、y=x
20、(2)、y=x2 (3)、y=x3問(wèn)題:,呢?問(wèn)題:從對(duì)上面幾個(gè)冪函數(shù)求導(dǎo),我們能發(fā)現(xiàn)有什么規(guī)律嗎?二、新授1、基本初等函數(shù)的求導(dǎo)公式: (k,b為常數(shù)) (C為常數(shù)) 由你能發(fā)現(xiàn)什么規(guī)律?(為常數(shù))從上面這一組公式來(lái)看,我們只要掌握冪函數(shù)、指對(duì)數(shù)函數(shù)、正余弦函數(shù)的求導(dǎo)就可以了。例1、求下列函數(shù)導(dǎo)數(shù)。(1)(2)(3)(4)(5)y=sin(+x) (6) y=sin(7)y=cos(2x) (8)y=例2:已知點(diǎn)P在函數(shù)y=cosx上,(0x2),在P處的切線斜率大于0,求點(diǎn)P的橫坐標(biāo)的取值范圍。例3.若直線為函數(shù)圖象的切線,求b的值和切點(diǎn)坐標(biāo).變式1.求曲線y=x2在點(diǎn)(1,1)處的切線方
21、程.總結(jié)切線問(wèn)題:找切點(diǎn) 求導(dǎo)數(shù) 得斜率變式2:求曲線y=x2過(guò)點(diǎn)(0,-1)的切線方程變式3:求曲線y=x3過(guò)點(diǎn)(1,1)的切線方程變式4:已知直線,點(diǎn)P為y=x2上任意一點(diǎn),求P在什么位置時(shí)到直線距離最短.三、小結(jié)(1)基本初等函數(shù)公式的求導(dǎo)公式(2)公式的應(yīng)用教后反思:課題:函數(shù)的和、差、積、商的導(dǎo)數(shù)教學(xué)目的:1.理解兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù)法則,學(xué)會(huì)用法則求一些函數(shù)的導(dǎo)數(shù)2.理解兩個(gè)函數(shù)的積的導(dǎo)數(shù)法則,學(xué)會(huì)用法則求乘積形式的函數(shù)的導(dǎo)數(shù) 3.能夠綜合運(yùn)用各種法則求函數(shù)的導(dǎo)數(shù) 教學(xué)重點(diǎn):用定義推導(dǎo)函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的推導(dǎo)授課類(lèi)型:新授課 教學(xué)過(guò)
22、程:一、復(fù)習(xí)引入:常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:;(k,b為常數(shù)) ; ; 二、講解新課:例1.求的導(dǎo)數(shù).法則1 兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),即 法則2常數(shù)與函數(shù)的積的導(dǎo)數(shù),等于常數(shù)與函數(shù)的積的導(dǎo)數(shù)法則3兩個(gè)函數(shù)的積的導(dǎo)數(shù),等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即 證明:令,則-+-,+因?yàn)樵邳c(diǎn)x處可導(dǎo),所以它在點(diǎn)x處連續(xù),于是當(dāng)時(shí),從而+,法則4 兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方,即三、講解范例:例1 求下列函數(shù)的導(dǎo)數(shù)1、y=x2+sinx的導(dǎo)數(shù).2、求的導(dǎo)數(shù)(兩種方法) 3、求
23、下列函數(shù)的導(dǎo)數(shù)4、y=5x10sinx2cosx9,求y5、求y=的導(dǎo)數(shù).變式:(1)求y=在點(diǎn)x=3處的導(dǎo)數(shù).(2) 求y=·cosx的導(dǎo)數(shù).例2求y=tanx的導(dǎo)數(shù).例3求滿足下列條件的函數(shù)(1)是三次函數(shù),且(2)是一次函數(shù),變式:已知函數(shù)f(x)=x3+bx2+cx+d的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M處(-1,f(-1)處的切線方程為6x-y+7=0,求函數(shù)的解析式四、課堂練習(xí):1.求下列函數(shù)的導(dǎo)數(shù):(1)y= (2)y= (3)y=五、小結(jié) :由常函數(shù)、冪函數(shù)及正、余弦函數(shù)經(jīng)加、減、乘運(yùn)算得到的簡(jiǎn)單的函數(shù)均可利用求導(dǎo)法則與導(dǎo)數(shù)公式求導(dǎo),而不需要回到導(dǎo)數(shù)的定義去求此類(lèi)簡(jiǎn)單函數(shù)
24、的導(dǎo)數(shù),商的導(dǎo)數(shù)法則()=(v0),如何綜合運(yùn)用函數(shù)的和、差、積、商的導(dǎo)數(shù)法則,來(lái)求一些復(fù)雜函數(shù)的導(dǎo)數(shù).要將和、差、積、商的導(dǎo)數(shù)法則記住 六、課后作業(yè):教后反思:課題簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)課型新授教學(xué)目標(biāo):1掌握簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)的推導(dǎo)2簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)的應(yīng)用教學(xué)重點(diǎn):掌握簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)的推導(dǎo)教學(xué)難點(diǎn):簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)的應(yīng)用教學(xué)過(guò)程備課札記一、基礎(chǔ)知識(shí)梳理:復(fù)合函數(shù)的求導(dǎo)數(shù)公式;二、典型例題分析:例1、求下列函數(shù)的導(dǎo)數(shù);1)、 2)、練習(xí):求下列函數(shù)的導(dǎo)數(shù)1)、 2)、例2、求下列函數(shù)的導(dǎo)數(shù);1)、 2)、練習(xí):求導(dǎo)數(shù); 1)、 2)、3)、求曲線在點(diǎn)P()處的切線方程。例3、設(shè),求及1)
25、、 2)、 3)、四、課堂小結(jié): 教后反思:第三章 導(dǎo)數(shù)的應(yīng)用課 題:函數(shù)的單調(diào)性教學(xué)目的:1.正確理解利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的原理;2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法教學(xué)重點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性教學(xué)難點(diǎn):利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性授課類(lèi)型:新授課 課時(shí)安排:1課時(shí) 教 具:多媒體、實(shí)物投影儀 內(nèi)容分析: 以前,我們用定義來(lái)判斷函數(shù)的單調(diào)性. 對(duì)于任意的兩個(gè)數(shù)x1,x2I,且當(dāng)x1x2時(shí),都有f(x1)f(x2),那么函數(shù)f(x)就是區(qū)間I上的增函數(shù). 對(duì)于任意的兩個(gè)數(shù)x1,x2I,且當(dāng)x1x2時(shí),都有f(x1)f(x2),那么函數(shù)f(x)就是區(qū)間I上的減函數(shù).在函數(shù)
26、y=f(x)比較復(fù)雜的情況下,比較f(x1)與f(x2)的大小并不很容易. 如果利用導(dǎo)數(shù)來(lái)判斷函數(shù)的單調(diào)性就比較簡(jiǎn)單 教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:;2.法則1 法則2 , 法則3 二、講解新課:1. 函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系: 我們已經(jīng)知道,曲線y=f(x)的切線的斜率就是函數(shù)y=f(x)的導(dǎo)數(shù).從函數(shù)的圖像可以看到:y=f(x)=x24x+3切線的斜率f(x)(2,+)增函數(shù)正0(,2)減函數(shù)負(fù)0在區(qū)間(2,)內(nèi),切線的斜率為正,函數(shù)y=f(x)的值隨著x的增大而增大,即>0時(shí),函數(shù)y=f(x)在區(qū)間(2,)內(nèi)為增函數(shù);在區(qū)間(,2)內(nèi),切線的斜率為負(fù),函數(shù)y
27、=f(x)的值隨著x的增大而減小,即0時(shí),函數(shù)y=f(x)在區(qū)間(,2)內(nèi)為減函數(shù).定義:一般地,設(shè)函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)>0,那么函數(shù)y=f(x)在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)間內(nèi)<0,那么函數(shù)y=f(x)在為這個(gè)區(qū)間內(nèi)的減函數(shù)2.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:求函數(shù)f(x)的導(dǎo)數(shù)f(x).令f(x)0解不等式,得x的范圍就是遞增區(qū)間.令f(x)0解不等式,得x的范圍,就是遞減區(qū)間.三、講解范例:例1確定函數(shù)f(x)=x22x+4在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù).解:f(x)=(x22x+4)=2x2.令2x20,解得x1.當(dāng)x(1,+)
28、時(shí),f(x)0,f(x)是增函數(shù).令2x20,解得x1.當(dāng)x(,1)時(shí),f(x)0,f(x)是減函數(shù).例2確定函數(shù)f(x)=2x36x2+7在哪個(gè)區(qū)間內(nèi)是增函數(shù),哪個(gè)區(qū)間內(nèi)是減函數(shù).解:f(x)=(2x36x2+7)=6x212x令6x212x0,解得x2或x0當(dāng)x(,0)時(shí),f(x)0,f(x)是增函數(shù).當(dāng)x(2,+)時(shí),f(x)0,f(x)是增函數(shù).令6x212x0,解得0x2.當(dāng)x(0,2)時(shí),f(x)0,f(x)是減函數(shù).例3證明函數(shù)f(x)=在(0,+)上是減函數(shù).證法一:(用以前學(xué)的方法證)任取兩個(gè)數(shù)x1,x2(0,+)設(shè)x1x2.f(x1)f(x2)=x10,x20,x1x20x
29、1x2,x2x10, 0f(x1)f(x2)0,即f(x1)f(x2) f(x)=在(0,+)上是減函數(shù).證法二:(用導(dǎo)數(shù)方法證)=()=(1)·x2=,x0,x20,0. ,f(x)=在(0,+)上是減函數(shù).點(diǎn)評(píng):比較一下兩種方法,用求導(dǎo)證明是不是更簡(jiǎn)捷一些.如果是更復(fù)雜一些的函數(shù),用導(dǎo)數(shù)的符號(hào)判別函數(shù)的增減性更能顯示出它的優(yōu)越性.例4確定函數(shù)的單調(diào)減區(qū)間例已知函數(shù)y=x+,試討論出此函數(shù)的單調(diào)區(qū)間.解:y=(x+)=11·x2=令0. 解得x1或x1.y=x+的單調(diào)增區(qū)間是(,1)和(1,+).令0,解得1x0或0x1.y=x+的單調(diào)減區(qū)間是(1,0)和(0,1)四、課
30、堂練習(xí):1確定下列函數(shù)的單調(diào)區(qū)間(1)y=x39x2+24x (2)y=xx3(1)解:y=(x39x2+24x)=3x218x+24=3(x2)(x4)令3(x2)(x4)0,解得x4或x2.y=x39x2+24x的單調(diào)增區(qū)間是(4,+)和(,2)令3(x2)(x4)0,解得2x4.y=x39x2+24x的單調(diào)減區(qū)間是(2,4)(2)解:y=(xx3)=13x2=3(x2)=3(x+)(x)令3(x+)(x)0,解得x.y=xx3的單調(diào)增區(qū)間是(,).令3(x+)(x)0,解得x或x.y=xx3的單調(diào)減區(qū)間是(,)和(,+)2.討論二次函數(shù)y=ax2+bx+c(a0)的單調(diào)區(qū)間.解:y=(a
31、x2+bx+c)=2ax+b, 令2ax+b0,解得xy=ax2+bx+c(a0)的單調(diào)增區(qū)間是(,+)令2ax+b0,解得x.y=ax2+bx+c(a0)的單調(diào)減區(qū)間是(,)3.求下列函數(shù)的單調(diào)區(qū)間(1)y= (2)y= (3)y=+x(1)解:y=()=當(dāng)x0時(shí),0,y0.y=的單調(diào)減區(qū)間是(,0)與(0,+)(2)解:y=()當(dāng)x±3時(shí),0,y0.y=的單調(diào)減區(qū)間是(,3),(3,3)與(3,+).(3)解:y=(+x).當(dāng)x0時(shí)+10,y0. y=+x的單調(diào)增區(qū)間是(0,+)五、小結(jié) :f(x)在某區(qū)間內(nèi)可導(dǎo),可以根據(jù)0或0求函數(shù)的單調(diào)區(qū)間,或判斷函數(shù)的單調(diào)性,或證明不等式.
32、以及當(dāng)=0在某個(gè)區(qū)間上,那么f(x)在這個(gè)區(qū)間上是常數(shù)函數(shù) 六、課后作業(yè):教后反思:1.32課 題:函數(shù)的極值(1)教學(xué)目的:1.理解極大值、極小值的概念.2.能夠運(yùn)用判別極大值、極小值的方法來(lái)求函數(shù)的極值.3.掌握求可導(dǎo)函數(shù)的極值的步驟教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.教學(xué)難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟授課類(lèi)型:新授課 課時(shí)安排:1課時(shí)教 具:多媒體、實(shí)物投影儀內(nèi)容分析:對(duì)極大、極小值概念的理解,可以結(jié)合圖象進(jìn)行說(shuō)明.并且要說(shuō)明函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點(diǎn)的關(guān)鍵是這
33、點(diǎn)兩側(cè)的導(dǎo)數(shù)異號(hào)教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:;2.法則1 法則2 , 法則3 3.復(fù)合函數(shù)的導(dǎo)數(shù):(理科)4. 函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系:設(shè)函數(shù)y=f(x) 在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個(gè)區(qū)間內(nèi)>0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的增函數(shù);如果在這個(gè)區(qū)間內(nèi)<0,那么函數(shù)y=f(x) 在為這個(gè)區(qū)間內(nèi)的減函數(shù)5.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟:求函數(shù)f(x)的導(dǎo)數(shù)f(x). 令f(x)0解不等式,得x的范圍就是遞增區(qū)間.令f(x)0解不等式,得x的范圍,就是遞減區(qū)間二、講解新課:1.極大值: 一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn)
34、都有f(x)f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3.極大值與極小值統(tǒng)稱(chēng)為極值在定義中,取得極值的點(diǎn)稱(chēng)為極值點(diǎn),極值點(diǎn)是自變量的值,極值指的是函數(shù)值請(qǐng)注意以下幾點(diǎn):()極值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小()函數(shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小
35、值可以不止一個(gè)()極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)4. 判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值5. 求可導(dǎo)函數(shù)f(x)的極值的步驟: (1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)(2)求方程=0的根(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義
36、區(qū)間分成若干小開(kāi)區(qū)間,并列成表格.檢查在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào),那么f(x)在這個(gè)根處無(wú)極值三、講解范例:例1求y=x34x+的極值解:y=(x34x+)=x24=(x+2)(x2)令y=0,解得x1=2,x2=2當(dāng)x變化時(shí),y,y的變化情況如下表-2(-2,2)2+00+極大值極小值當(dāng)x=2時(shí),y有極大值且y極大值=當(dāng)x=2時(shí),y有極小值且y極小值=5例2求y=(x21)3+1的極值解:y=6x(x21)2=6x(x+1)2(x1)2令y=0解得x1=1,x2=0,x3=1當(dāng)x變
37、化時(shí),y,y的變化情況如下表-1(-1,0)0(0,1)100+0+無(wú)極值極小值0無(wú)極值當(dāng)x=0時(shí),y有極小值且y極小值=0求極值的具體步驟:第一,求導(dǎo)數(shù).第二,令=0求方程的根,第三,列表,檢查在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值,如果左右都是正,或者左右都是負(fù),那么f(x)在這根處無(wú)極值.如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn) 四、課堂練習(xí):1求下列函數(shù)的極值.(1)y=x27x+6 (2)y=x327x(1)解:y=(x27x+6)=2x7令y=0,解得x=.當(dāng)x變化時(shí),y,y的變化情
38、況如下表.0+極小值當(dāng)x=時(shí),y有極小值,且y極小值=(2)解:y=(x327x)=3x227=3(x+3)(x3)令y=0,解得x1=3,x2=3.當(dāng)x變化時(shí),y,y的變化情況如下表-3(-3,3)3+00+極大值54極小值-54當(dāng)x=3時(shí),y有極大值,且y極大值=54當(dāng)x=3時(shí),y有極小值,且y極小值=54五、小結(jié) :函數(shù)的極大、極小值的定義以及判別方法.求可導(dǎo)函數(shù)f(x)的極值的三個(gè)步驟.還有要弄清函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的,在整個(gè)定義區(qū)間可能有多個(gè)極值,且要在這點(diǎn)處連續(xù).可導(dǎo)函數(shù)極值點(diǎn)的導(dǎo)數(shù)為0,但導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn),要看這點(diǎn)兩側(cè)的導(dǎo)數(shù)是否異號(hào).函數(shù)的不可導(dǎo)點(diǎn)
39、可能是極值點(diǎn) 六、課后作業(yè):教后反思:課題:函數(shù)的最大值與最小值教學(xué)目的:使學(xué)生理解函數(shù)的最大值和最小值的概念,掌握可導(dǎo)函數(shù)在閉區(qū)間上所有點(diǎn)(包括端點(diǎn))處的函數(shù)中的最大(或最?。┲当赜械某浞謼l件;使學(xué)生掌握用導(dǎo)數(shù)求函數(shù)的極值及最值的方法和步驟教學(xué)重點(diǎn):利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點(diǎn):函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.極大值:一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2.極小值:一般地,設(shè)函數(shù)f(x)在x
40、0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3.極大值與極小值統(tǒng)稱(chēng)為極值注意以下幾點(diǎn):()極值是一個(gè)局部概念由定義,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最?。ǎ┖瘮?shù)的極值不是唯一的即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)()極大值與極小值之間無(wú)確定的大小關(guān)系即一個(gè)函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>()函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)而使函數(shù)取得最大值、最
41、小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)二、講解新課:1.函數(shù)的最大值和最小值觀察圖中一個(gè)定義在閉區(qū)間上的函數(shù)的圖象圖中與是極小值,是極大值函數(shù)在上的最大值是,最小值是一般地,在閉區(qū)間上連續(xù)的函數(shù)在上必有最大值與最小值說(shuō)明:在開(kāi)區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值如函數(shù)在內(nèi)連續(xù),但沒(méi)有最大值與最小值;函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè)利用導(dǎo)數(shù)求函數(shù)的最值步驟:由上面函數(shù)的圖象可以
42、看出,只要把連續(xù)函數(shù)所有的極值與定義區(qū)間端點(diǎn)的函數(shù)值進(jìn)行比較,就可以得出函數(shù)的最值了設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo),則求在上的最大值與最小值的步驟如下:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值三、講解范例:例1求函數(shù)在區(qū)間上的最大值與最小值例2已知x,y為正實(shí)數(shù),且滿足,求的取值范圍例3.設(shè),函數(shù)的最大值為1,最小值為,求常數(shù)a,b例4已知,(0,+).是否存在實(shí)數(shù),使同時(shí)滿足下列兩個(gè)條件:(1))在(0,1)上是減函數(shù),在1,+)上是增函數(shù);(2)的最小值是1,若存在,求出,若不存在,說(shuō)明理由.四、課堂練習(xí):1下列說(shuō)法正確的是( )A.函數(shù)的極大值就是函數(shù)的最大值 B.函數(shù)的極小值就是函
43、數(shù)的最小值C.函數(shù)的最值一定是極值 D.在閉區(qū)間上的連續(xù)函數(shù)一定存在最值2.函數(shù)y=f(x)在區(qū)間a,b上的最大值是M,最小值是m,若M=m,則f(x)( )A.等于0B.大于0 C.小于0D.以上都有可能3.函數(shù)y=,在1,1上的最小值為( )A.0B.2 C.1D.4.函數(shù)y=的最大值為( )。A.B.1 C.D.5.設(shè)y=|x|3,那么y在區(qū)間3,1上的最小值是( )A.27B.3 C.1D.16.設(shè)f(x)=ax36ax2+b在區(qū)間1,2上的最大值為3,最小值為29,且a>b,則( )A.a=2,b=29B.a=2,b=3 C.a=3,b=2 D.a=2,b=3五、小結(jié):函數(shù)在閉
44、區(qū)間上的最值點(diǎn)必在下列各種點(diǎn)之中:導(dǎo)數(shù)等于零的點(diǎn),導(dǎo)數(shù)不存在的點(diǎn),區(qū)間端點(diǎn);函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而非必要條件;閉區(qū)間上的連續(xù)函數(shù)一定有最值;開(kāi)區(qū)間內(nèi)的可導(dǎo)函數(shù)不一定有最值,若有唯一的極值,則此極值必是函數(shù)的最值.教后反思:課 題:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用教學(xué)目的:1. 進(jìn)一步熟練函數(shù)的最大值與最小值的求法;初步會(huì)解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題 教學(xué)重點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題教學(xué)難點(diǎn):解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題授課類(lèi)型:新授課 課時(shí)安排:1課時(shí) 教 具:多媒體、實(shí)物投影儀 教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.極大值: 一般地,設(shè)函數(shù)f(x)在
45、點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)2.極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)f(x0).就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)3.極大值與極小值統(tǒng)稱(chēng)為極值 4. 判別f(x0)是極大、極小值的方法:若滿足,且在的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值5. 求可導(dǎo)函數(shù)f(x)的極值的
46、步驟:(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f(x)(2)求方程f(x)=0的根(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開(kāi)區(qū)間,并列成表格.檢查f(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào)即都為正或都為負(fù),那么f(x)在這個(gè)根處無(wú)極值6.函數(shù)的最大值和最小值:在閉區(qū)間上連續(xù)的函數(shù)在上必有最大值與最小值在開(kāi)區(qū)間內(nèi)連續(xù)的函數(shù)不一定有最大值與最小值函數(shù)的最值是比較整個(gè)定義域內(nèi)的函數(shù)值得出的;函數(shù)的極值是比較極值點(diǎn)附近函數(shù)值得出的函數(shù)在閉區(qū)間上連續(xù),是在閉區(qū)間上有最大值與最小值的充分條件而
47、非必要條件(4)函數(shù)在其定義區(qū)間上的最大值、最小值最多各有一個(gè),而函數(shù)的極值可能不止一個(gè),也可能沒(méi)有一個(gè)7.利用導(dǎo)數(shù)求函數(shù)的最值步驟:求在內(nèi)的極值;將的各極值與、比較得出函數(shù)在上的最值二、講解范例:_x_x_60_60xx例1在邊長(zhǎng)為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的容積最大?最大容積是多少?解法一:設(shè)箱底邊長(zhǎng)為xcm,則箱高cm,得箱子容積令 0,解得 x=0(舍去),x=40, 并求得V(40)=16 000由題意可知,當(dāng)x過(guò)?。ń咏?)或過(guò)大(接近60)時(shí),箱子容積很小,因此,16 000是最大值
48、答:當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3解法二:設(shè)箱高為xcm,則箱底長(zhǎng)為(60-2x)cm,則得箱子容積(后面同解法一,略)由題意可知,當(dāng)x過(guò)小或過(guò)大時(shí)箱子容積很小,所以最大值出現(xiàn)在極值點(diǎn)處事實(shí)上,可導(dǎo)函數(shù)、在各自的定義域中都只有一個(gè)極值點(diǎn),從圖象角度理解即只有一個(gè)波峰,是單峰的,因而這個(gè)極值點(diǎn)就是最值點(diǎn),不必考慮端點(diǎn)的函數(shù)值例2圓柱形金屬飲料罐的容積一定時(shí),它的高與底與半徑應(yīng)怎樣選取,才能使所用的材料最???解:設(shè)圓柱的高為h,底半徑為R,則表面積S=2Rh+2R2由V=R2h,得,則S(R)= 2R+ 2R2=+2R2令+4R=0解得,R=,從而h=2即h=2R因?yàn)?/p>
49、S(R)只有一個(gè)極值,所以它是最小值答:當(dāng)罐的高與底直徑相等時(shí),所用材料最省變式:當(dāng)圓柱形金屬飲料罐的表面積為定值S時(shí),它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?。?提示:S=2+h=V(R)=R=)=0例3在經(jīng)濟(jì)學(xué)中,生產(chǎn)x單位產(chǎn)品的成本稱(chēng)為成本函數(shù)同,記為C(x),出售x單位產(chǎn)品的收益稱(chēng)為收益函數(shù),記為R(x),R(x)C(x)稱(chēng)為利潤(rùn)函數(shù),記為P(x)。(1)、如果C(x),那么生產(chǎn)多少單位產(chǎn)品時(shí),邊際最低?(邊際成本:生產(chǎn)規(guī)模增加一個(gè)單位時(shí)成本的增加量)(2)、如果C(x)=50x10000,產(chǎn)品的單價(jià)P1000.01x,那么怎樣定價(jià),可使利潤(rùn)最大?變式:已知某商品生產(chǎn)成本C與產(chǎn)量
50、q的函數(shù)關(guān)系式為C=100+4q,價(jià)格p與產(chǎn)量q的函數(shù)關(guān)系式為求產(chǎn)量q為何值時(shí),利潤(rùn)L最大?分析:利潤(rùn)L等于收入R減去成本C,而收入R等于產(chǎn)量乘價(jià)格由此可得出利潤(rùn)L與產(chǎn)量q的函數(shù)關(guān)系式,再用導(dǎo)數(shù)求最大利潤(rùn)解:收入,利潤(rùn)令,即,求得唯一的極值點(diǎn)答:產(chǎn)量為84時(shí),利潤(rùn)L最大三、課堂練習(xí):1.函數(shù)y=2x33x212x+5在0,3上的最小值是_.2.函數(shù)f(x)=sin2xx在,上的最大值為_(kāi);最小值為_(kāi).3.將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成_和_.4.使內(nèi)接橢圓=1的矩形面積最大,矩形的長(zhǎng)為_(kāi),寬為_(kāi).5.在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽開(kāi)時(shí),它的面積最大答案:1. 15 2. 3. 4.ab 5.R四、小結(jié) :解有關(guān)函數(shù)最大值、最小值的實(shí)際問(wèn)題,需要分析問(wèn)題中各個(gè)變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問(wèn)題的實(shí)際意義根據(jù)問(wèn)題的實(shí)際意義來(lái)判斷函數(shù)最值時(shí),如果函數(shù)在此區(qū)間上只有一個(gè)極值點(diǎn),那么這個(gè)極值就是所求最值,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房建資源配備計(jì)劃2
- 世界節(jié)水活動(dòng)方案
- 世貿(mào)服飾活動(dòng)策劃方案
- 業(yè)主簽名活動(dòng)方案
- 大連踏青活動(dòng)方案
- 夏季啤酒活動(dòng)方案
- 大學(xué)外聯(lián)活動(dòng)方案
- 夏天孕婦瑜伽活動(dòng)方案
- 墻紙促銷(xiāo)活動(dòng)方案
- 大班推廣普通畫(huà)活動(dòng)方案
- 小學(xué)數(shù)學(xué)“組題”設(shè)計(jì)分析 論文
- 附件16:地下室燈帶臨時(shí)照明系統(tǒng)方案
- 中央空調(diào)維護(hù)保養(yǎng)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 服務(wù)認(rèn)證培訓(xùn)課件
- 風(fēng)電場(chǎng)反事故措施
- 細(xì)胞生物學(xué)與疾病預(yù)防與治療
- 《銀行業(yè)風(fēng)險(xiǎn)管理》課件
- 工程倫理 課件全套 李正風(fēng) 第1-9章 工程與倫理、如何理解倫理- 全球化視野下的工程倫理
- 餐飲服務(wù)質(zhì)量保證措施
- 美國(guó)FDA-21CFR820法規(guī)培訓(xùn)
- 報(bào)名統(tǒng)計(jì)表格
評(píng)論
0/150
提交評(píng)論