




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、矩陣的特征值與特征向量 摘 要 本文介紹了矩陣的特征值與特征向量的一些基本性質及定理,通過分析基本性質和定理來得出它們的基本求解方法,并延伸到一些特殊求解法。接下來還介紹了一類特殊矩陣實對稱矩陣的特征值與特征向量,這讓讀者對矩陣的特征值與特征向量有更進一步的理解。關鍵詞: Matrix eigenvalue and eigenvector Zhong Yueyuan ( Finally gives the matrix eigenvalue and eigenvector of the application in the actual example.Key word : 目 錄中文摘要.引
2、言.11 矩陣的特征值與特征向量.11.1 矩陣的特征值與特征向量的定義及基本理論.11.2 求解矩陣的特征值與特征向量方法 .42 實對稱矩陣的特征值與特征向量.72.1 實對稱矩陣的性質、定理及對角化.72.2 求實對稱矩陣的特征值與特征向量.93 矩陣的特征值與特征向量的舉例應用.103.1 用特征值理論求解Fibonacci數(shù)列通項.113.2 在研究經(jīng)濟發(fā)展與環(huán)境污染中的應用.12.15參考文獻.16.17矩陣是高等代數(shù)課程的一個基本概念,是研究高等代數(shù)的基本工具。線性空間、線性變換等,都是以矩陣作為手段;由此演繹出豐富多彩的理論畫卷。求解矩陣的特征值和特征向量,是高等數(shù)學中經(jīng)常碰到
3、的問題。一般的線性代數(shù)教材中,都是先計算特征多項式,然后求得特征值,再通過解線性方程組得到對應的特征向量。特征多項式和特征根在整個矩陣理論體系中具有舉足輕重的作用,并且在實際中也有廣泛的應用。1 矩陣的特征值與特征向量1.1 矩陣的特征值與特征向量的定義及基本理論定義1 設一個階方陣,是一個數(shù),如果方程 (1.1) 存在非零解向量,則稱為的一個特征值,相應的非零解向量稱為屬于特征值的特征向量。 (1) 式也可寫成, (1.2) 這是個未知數(shù)個方程的齊次線性方程組,它有非零解的充分必要條件是系數(shù)行列式 (1.3) 即 上式是以為未知數(shù)的一元次方程,稱為方多項式陣的特征方程。其左端是的次多項式,記
4、作,稱為方陣的特征。 =|AE|= 顯然,的特征值就是特征方程的解。特征方程在復數(shù)范圍內恒有解,其個數(shù)為方程的次數(shù)(重根按重數(shù)計算)。因此,階矩陣有個特征值。設階矩陣的特征值為由多項式的根與系數(shù)之間的關系,不難證明 ()().若為的一個特征值,則一定是方程的根, 因此又稱特征根,若為方程的重根,則稱為的重特征根。方程的每一個非零解向量都是相應于的特征向量,于是我們可以得到求矩陣的全部特征值和特征向量的方法如下: 第一步:計算的特征多項式; 第二步:求出特征方程的全部根,即為的全部特征值; 第三步:對于的每一個特征值,求出齊次線性方程組: 的一個基礎解系則的屬于特征值的全部特征 向量是 。 定義
5、2 設是數(shù)域上線性空間的一個線性變換。如果對應中的一個數(shù),存在中的非零向量,使得 (1.4)那么就叫做的一個特征值,而叫做的屬于特征根的一個特征向量。顯然,如果是的屬于特征值的一個特征向量,那么對于任意,都有 (1.5) 這樣,如果是的一個特征向量,那么由所生成的一維子空間在之下不變;反過來,如果的一個一維子空間在之下不變,那么中每一個非零向量都是的屬于同一特征值的特征向量。特征時方向相反,時,例1 在V3中,是關于過原點的平面H的反 射,它是一個線性變換。那么H中的每個非零 向量都是的屬于特征值1的特征向量,V就是平面H。與H垂直的非零向量都是的屬于特征值 -1的特征向量,即V-1就是直 線
6、L(見圖1)。 圖1定理1 屬于不同特征值的特征向量一定線性無關。 證明 設是矩陣的不同特征值,而分別是屬于 的特征向量,要證是線性無關的。我們對特征值的個數(shù)m 作數(shù)學歸納法證明。 當時,由于特征向量不為零,所以結論顯然成立。 當時,假設時結論成立。 由于是的不同特征值,而是屬于的特征向量,因此 如果存在一組實數(shù),使 (1.6) 則上式兩邊乘以得 (1.7) 另一方面, ,即 (1.8)(4)(5)有 。 由歸納假設,線性無關,因此 (1.9) 而互不相同,所以。于是(1.9)變?yōu)?因,于是??梢娋€性無關。1.2 求解矩陣的特征值與特征向量的方法 在求矩陣的特征值與特征向量之前,我們來討論一下
7、特征值與特征向量的關系,它們的關系如下:征值征值征特值特征向量特征向量定義l 把矩陣的下列三種變換稱為行列互逆變換: 1互換i,j兩行,同時互換i,j列; 2第i行乘非零數(shù)k,同時第i列乘1k; 3第i行k倍加入第j行,同時第j列一k倍加入第i列。定理1 設是秩為的階矩陣,且 其中B是秩為的列滿秩矩陣,則矩陣P所含的個列向量就是齊次線性方程組AX=0的一個基礎解系(證明略)。定理 2 矩陣的特征矩陣經(jīng)列的初等變換可化為下三角的矩陣,且的主對角線上元素乘積的多項式的根恰為的所有特征值(證明略)。例l 求的特征值與特征向量解: 所以,特征值,特征向量分別為。例2 求矩陣的特征值與特征向量解: 由定
8、理1,令 ,得矩陣A的特征值為。 當時,(AE)已是標準上三角形矩陣,由定理2得 得特征向量, 當時,同理,特征向量為 初等變換法定理3 齊次線性方程組的系數(shù)矩陣的秩數(shù),非奇異矩陣的后n-r列便構成線性方程組的一個基礎解系。 證明: 又 。 從而即的后列,即的諸列為方程組的列向量。 因為為非奇異矩陣,所以的列線性無關,故它們構成方程組的一個基礎解系。如何求矩陣,從而得到,從上面的證明過程可以看出,需要進行如下計算:因矩陣的秩為,有列線性無關向量組,于是矩陣經(jīng)一系列的初等變換成為,其中秩,由此便得到。例3 已知,求矩陣A的特征根與特征向量。解:= 由知,的特征根。 當時, , 特征向量。 當時,
9、 , 特征向量 。2 對稱矩陣的特征值與特征向量2.1 實對稱矩陣的性質、定理及對角化定義1 如果有n階矩陣A,其各個元素都為實數(shù),且(轉置為其本身),則稱A為實對稱矩陣。定理 1 實對稱矩陣的特征值恒為實數(shù),從而它的特征向量都可取為實向量。定理 2 實對稱矩陣的不同特征值的特征向量是正交的。證明 設是實對稱矩陣的兩個不同的特征值,即是分別屬于的特征向量,則 ,根據(jù)內積的性質有 又 所以 因 ,故 ,即與正交。定理 3 設為階對稱矩陣,是的特征方程的重根,則矩陣的 秩從,從而對應特征值恰有個線性無關的特征向量。定理 4 設為階對稱矩陣,則必有正交矩陣,使,其中是 以的個特征值為對角元素的對角矩
10、陣。例 1 設 ,求一個正交矩陣,使為對角矩陣. 解: 所以的特征值 對于,解齊次線性方程組,得基礎解系 ,因此屬于的標準特征向量為 對于,解齊次線性方程組,得基礎解系 這兩個向量恰好正交,將其單位化即得兩個屬于的標準正交向量, 于是得正交矩陣 易驗證 。2.2 求實對稱矩陣的特征值與特征向量實對稱矩陣是矩陣的一種特殊形式,我們在學矩陣的時候已經(jīng)學會怎樣求解矩陣的特征值與特征向量。下面,分別用初等行變換和初等列變換來解實對稱矩陣的特征值與特征向量,以便大家更好地了解實對稱矩陣。定理1 n階矩陣A的特征矩陣經(jīng)列的初等變換可成為下三角矩陣: (2.1)其中的根就是的特征多項式的根。例1 求的特征值
11、與特征向量。 解: 所以,特征值分別為;特征向量分別為例2 求矩陣的特征值與特征向量。解: 特征值為(三重根),。 當時, 特征向量。3 矩陣的特征值與特征向量的舉例應用 上面幾章已經(jīng)對矩陣的特征值與特征向量的理論知識進行了學習,現(xiàn)在我們要解決的是怎樣將理論知識應用到實際中去,以達到學以致用的效果。下面就讓我們一起來學習矩陣的特征值與特征向量在實際生活中的具體應用。3.1 用矩陣特征值理論求解Fibonacci數(shù)列通項斐波那契數(shù)列,又稱黃金分割數(shù)列,指的是這樣一個數(shù)列:1、1、2、3、5、8、13、21、在數(shù)學上,斐波那契數(shù)列以如下被以遞歸的方法定義:,在現(xiàn)代物理、準晶體結構、化學等領域,斐波
12、那契數(shù)列都有直接的應用,為此,美國數(shù)學會從年起出版了斐波那契數(shù)列季刊,專門刊載這方面的研究成果。在1202年,裴波那契在一本書中提出一個問題:如果一對兔子出生一個月后開始繁殖,每個月生出一對后代,現(xiàn)有一對新生兔子,假定兔子只繁殖,沒有死亡,問第K 個月月初會有多少對兔子?以“對”為單位,每月兔子組對數(shù)構成一個數(shù)列,這便是著名的Fibonacci數(shù)列:0,1,1,2,3,5,,滿足條件 (3.1)試著求出通項?,F(xiàn)在我們運用矩陣的工具來求數(shù)列的通項。解:由關系式令則上述關系式可以寫成矩陣形式 (3.2)由(3.2)式遞推可得 (3.3)于是求的問題歸結為求,即求的問題。由得A的特征值 , 對應于的
13、特征向量分別為 (3.4)令 于是 (3.5) 將 , 代入(3.5)得 (3.6) 對應于任何整數(shù)k,由(6)式求得的都是正整數(shù),當K=20時,=6765,即20個月后有6765對兔子,此例中利用矩陣的特征值理論,方便地求出Fibonacci數(shù)列的通項公式。3.2 在研究經(jīng)濟發(fā)展與環(huán)境污染之間關系中的應用 經(jīng)濟發(fā)展與環(huán)境污染是當今世界亟待解決的兩個突出問題。為研究某地區(qū)的經(jīng)濟發(fā)展與環(huán)境污染之間的關系,可建立如下數(shù)學模型: 設分別為某地區(qū)目前的環(huán)境污染水平與經(jīng)濟發(fā)展水平,分別為該地區(qū)若干年后的環(huán)境污染水平和經(jīng)濟發(fā)展水平,且有如下關系: 令 , 則上述關系的矩陣形式為 。此式反映了該地區(qū)當前和若
14、干年后的環(huán)境污染水平和經(jīng)濟發(fā)展水平之間的關系。如 則由上式得 由此可預測該地區(qū)若干年后的環(huán)境污染水平和經(jīng)濟發(fā)展水平。一般地,若令分別為該地區(qū)t年后的環(huán)境污染水平與經(jīng)濟發(fā)展水平,則經(jīng)濟發(fā)展與環(huán)境污染的增長模型為令則上述關系的矩陣形式為由此,有由此可預測該地區(qū)年后的環(huán)境污染水平和經(jīng)濟發(fā)展水平。面作進一步地討論: 由矩陣 的特征多項式 得A 的特征值為對,解方程得特征向量對,解方程得特征向量顯然, 線性無關。下面分三種情況分析:情況一 一個性質:若是矩陣A的屬于特征值的特征向量,則也是的屬于特征值的特征向量。 由(*)及特征值與特征向量的性質知,即 或此式表明:在當前的環(huán)境污染水平和經(jīng)濟發(fā)展水平的前
15、提下,t年后,當經(jīng)濟發(fā)展水平達到較高程度時,環(huán)境污染也保持著同步惡化趨勢。情況二 ,所以不討論此種情況。情況三 ,不是特征值,所以不能類似分析。但是可以由唯一線性表示出來 。由(*)及特征值與特征向量的性質得即 由此可預測該地區(qū)t年后的環(huán)境污染水平和經(jīng)濟發(fā)展水平。因無實際意義而在情況二中未作討論,但在情況三的討論中仍起到了重要作用。由經(jīng)濟發(fā)展與環(huán)境污染的增長模型易見,特征值和特征向量理論在模型的分析和研究中獲得了成功的應用。 4 結論 通過本章的學習,我們對矩陣的特征值與特征向量的定義、性質有了更深的了解,并且學會用不同的方法計算特征值與特征向量。將矩陣應用到實際生活中去,解決實際問題,這才是
16、我們學習各種理論知識的最終目的。學習和研究數(shù)學,聯(lián)系實際,通過數(shù)學的工具來解決生活上問題。離開數(shù)學別的科學研究是寸步難行的,所以我們必須重視數(shù)學,深入研究數(shù)學,從而促進所有科學的發(fā)展。 在這篇文章中,由于知識的有限,還存在很多的不足,對矩陣的特征值與特征向量的研究還不夠深入,需要所有從事數(shù)學研究的老師和學者的共同努力,加強理論知識在實際中的應用。參考文獻: 1 曹志浩編著.矩陣特征值問題M. 上海科學技術出版社.1980 2 楊廷俊.矩陣特征值與特征向量的同步求解法J.甘肅聯(lián)合大學學報(自然科學版). 2006,3:2-3. 3 何翼. 求矩陣的特征值與特征向量的新方法J. 銅仁學院學報. 2
17、009,3:4-5. 4 邵麗麗. 矩陣的特征值和特征向量的應用研究J. 菏澤學院學報. 2006,5:1-3. 5 張紅玉.矩陣特征值的理論及應用J. 山西大同大學學報(自然科學版). 2009,1:7-8. 6 張霓. 矩陣特征值和特征向量的一些應用J. 中國科技信息. 2007,11:13-6. .8 劉國琪. 矩陣特征值與特征向量的同步求解J. 重慶師范學院學報(自然科學 版).1996,S1:5-7. 9 劉亞亞,程國. 一種改進的求方陣特征值的方法J. 商洛學院學報. 2008,2:1-2. 10 陳景良,陳向暉著.特殊矩陣M. 清華大學出版社, 2001 11 李高明.張明禮求矩
18、陣特征向量的一個新方法J-高等數(shù)學研究2006,9,4:3-3. 12 王秀芬 線性遞推關系中特征值與特征向量的應用J-濰坊學院學報2004,4,4:2-4. 13 楊子胥. 高等代數(shù)習題解M . 濟南:山東科學技術出版社,1982.致 謝 彈指一揮間,大學四年已經(jīng)接近了尾聲。當自己懷著忐忑不安的心情完成這篇畢業(yè)論文的時候, 自己也從當年一個從山里走出的懵懂孩子變成了一個成熟青年,回想自己的十幾年的求學生涯,雖然只是一個本科畢業(yè),但也實屬不易。首先,從小學到大學的學費和生活費就不是一個小數(shù)目,這當然要感謝我的父母,他們都是農(nóng)民,沒有他們的勤勤懇懇和細心安排,我是無論如何也完成不了我的大學生活。當然,一個農(nóng)民家庭要同時供兩個大學生上學,沒有別人的幫助和接濟是相當困難的。 因此我要感謝那些在我求學時對我經(jīng)濟和精神上幫助的親戚、朋友、老師和同學們,我的生活因你們而精彩和充實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Taylor-Couette混凝實驗絮凝劑殘留鋁的影響因素研究
- 黑龍江省農(nóng)業(yè)農(nóng)村現(xiàn)代化水平評價及優(yōu)化路徑研究
- miR-21-5p通過影響TAMs在肺癌進展中的作用及機制研究
- 我長大了-健康活動
- 腹瀉的護理要點
- 小孩子機器人教育培訓
- 工廠質量培訓課件
- 預防詐騙主題班會課件
- 預防地震知識培訓課件
- 火災預防知識培訓
- 酒店衛(wèi)生管理自查報告和整改措施
- 安全教育培訓:實現(xiàn)安全文明施工
- 2025至2030分布式能源行業(yè)市場深度調研及發(fā)展規(guī)劃及有效策略與實施路徑評估報告
- 班主任常規(guī)工作培訓課件
- 反邪教宣講課件
- 2025年全國統(tǒng)一高考英語Ⅰ卷(含答案)
- 1 感受生活中的法律 課件-道德與法治六年級上冊統(tǒng)編版
- 股份代持及員工持股計劃協(xié)議書范本
- 中醫(yī)集市活動方案
- 2025年江蘇省南京市中考歷史試卷(含解析)
- 腫瘤隨訪登記培訓
評論
0/150
提交評論