版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第二十五講 平面向量的概念及運算一、復(fù)習(xí)目標(biāo)要求(1)平面向量的實際背景及基本概念通過力和力的分析等實例,了解向量的實際背景,理解平面向量和向量相等的含義,理解向量的幾何表示;(2)向量的線性運算通過實例,掌握向量加、減法的運算,并理解其幾何意義;通過實例,掌握向量數(shù)乘的運算,并理解其幾何意義,以及兩個向量共線的含義;了解向量的線性運算性質(zhì)及其幾何意義。(3)平面向量的基本定理及坐標(biāo)表示了解平面向量的基本定理及其意義;掌握平面向量的正交分解及其坐標(biāo)表示;會用坐標(biāo)表示平面向量的加、減與數(shù)乘運算; 理解用坐標(biāo)表示的平面向量共線的條件。二、2010年命題預(yù)測本講內(nèi)容屬于平面向量的基礎(chǔ)性內(nèi)容,與平面向
2、量的數(shù)量積比較出題量較小。以選擇題、填空題考察本章的基本概念和性質(zhì),重點考察向量的概念、向量的幾何表示、向量的加減法、實數(shù)與向量的積、兩個向量共線的充要條件、向量的坐標(biāo)運算等。此類題難度不大,分值59分。預(yù)測2010年高考:(1)題型可能為1道選擇題或1道填空題;(2)出題的知識點可能為以平面圖形為載體表達平面向量、借助基向量表達交點位置或借助向量的坐標(biāo)形式表達共線等問題。三、知識精點講解1向量的概念向量既有大小又有方向的量。向量一般用來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法。向量的大小即向量的模(長度),記作|即向量的大小,記作|。向量不能比較大小,但向量
3、的??梢员容^大小。零向量長度為0的向量,記為,其方向是任意的,與任意向量平行零向量0。由于的方向是任意的,且規(guī)定平行于任何向量,故在有關(guān)向量平行(共線)的問題中務(wù)必看清楚是否有“非零向量”這個條件。(注意與0的區(qū)別)單位向量模為1個單位長度的向量,向量為單位向量1。平行向量(共線向量)方向相同或相反的非零向量。任意一組平行向量都可以移到同一直線上,方向相同或相反的向量,稱為平行向量,記作。由于向量可以進行任意的平移(即自由向量),平行向量總可以平移到同一直線上,故平行向量也稱為共線向量。數(shù)學(xué)中研究的向量是自由向量,只有大小、方向兩個要素,起點可以任意選取,現(xiàn)在必須區(qū)分清楚共線向量中的“共線”與
4、幾何中的“共線”、的含義,要理解好平行向量中的“平行”與幾何中的“平行”是不一樣的。相等向量長度相等且方向相同的向量相等向量經(jīng)過平移后總可以重合,記為。大小相等,方向相同。2向量的運算(1)向量加法求兩個向量和的運算叫做向量的加法。設(shè),則+=。規(guī)定:(1);(2)向量加法滿足交換律與結(jié)合律;向量加法的“三角形法則”與“平行四邊形法則”(1)用平行四邊形法則時,兩個已知向量是要共始點的,和向量是始點與已知向量的始點重合的那條對角線,而差向量是另一條對角線,方向是從減向量指向被減向量。(2) 三角形法則的特點是“首尾相接”,由第一個向量的起點指向最后一個向量的終點的有向線段就表示這些向量的和;差向
5、量是從減向量的終點指向被減向量的終點。當(dāng)兩個向量的起點公共時,用平行四邊形法則;當(dāng)兩向量是首尾連接時,用三角形法則。向量加法的三角形法則可推廣至多個向量相加: ,但這時必須“首尾相連”。(2)向量的減法 相反向量:與長度相等、方向相反的向量,叫做的相反向量。記作,零向量的相反向量仍是零向量。關(guān)于相反向量有: (i)=; (ii) +()=()+=;(iii)若、是互為相反向量,則=,=,+=。向量減法向量加上的相反向量叫做與的差,記作:求兩個向量差的運算,叫做向量的減法。作圖法:可以表示為從的終點指向的終點的向量(、有共同起點)。(3)實數(shù)與向量的積實數(shù)與向量的積是一個向量,記作,它的長度與方
6、向規(guī)定如下:();()當(dāng)時,的方向與的方向相同;當(dāng)時,的方向與的方向相反;當(dāng)時,方向是任意的。數(shù)乘向量滿足交換律、結(jié)合律與分配律。3兩個向量共線定理:向量與非零向量共線有且只有一個實數(shù),使得=。4平面向量的基本定理如果是一個平面內(nèi)的兩個不共線向量,那么對這一平面內(nèi)的任一向量,有且只有一對實數(shù)使:其中不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底。5平面向量的坐標(biāo)表示(1)平面向量的坐標(biāo)表示:在直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個單位向量作為基底由平面向量的基本定理知,該平面內(nèi)的任一向量可表示成,由于與數(shù)對(x,y)是一一對應(yīng)的,因此把(x,y)叫做向量的坐標(biāo),記作=(x,y),其中
7、x叫作在x軸上的坐標(biāo),y叫做在y軸上的坐標(biāo)。規(guī)定:(1)相等的向量坐標(biāo)相同,坐標(biāo)相同的向量是相等的向量;(2)向量的坐標(biāo)與表示該向量的有向線段的始點、終點的具體位置無關(guān),只與其相對位置有關(guān)系。(2)平面向量的坐標(biāo)運算:若,則;若,則;若=(x,y),則=(x, y);若,則。四典例解析題型1:平面向量的概念例1(1)給出下列命題:若|,則=;若A,B,C,D是不共線的四點,則是四邊形ABCD為平行四邊形的充要條件;若=,=,則=;=的充要條件是|=|且/; 若/,/,則/;其中正確的序號是 。(2)設(shè)為單位向量,(1)若為平面內(nèi)的某個向量,則=|·(2)若與a0平行,則=|·
8、;;(3)若與平行且|=1,則=。上述命題中,假命題個數(shù)是( )A0B1C2D3解析:(1)不正確兩個向量的長度相等,但它們的方向不一定相同;正確; , 且,又 A,B,C,D是不共線的四點, 四邊形 ABCD為平行四邊形;反之,若四邊形ABCD為平行四邊形,則,且,因此,。正確; =, ,的長度相等且方向相同;又, ,的長度相等且方向相同, ,的長度相等且方向相同,故。 不正確;當(dāng)/且方向相反時,即使|=|,也不能得到=,故|=|且/不是=的充要條件,而是必要不充分條件; 不正確;考慮=這種特殊情況; 綜上所述,正確命題的序號是。點評:本例主要復(fù)習(xí)向量的基本概念。向量的基本概念較多,因而容易
9、遺忘。為此,復(fù)習(xí)時一方面要構(gòu)建良好的知識結(jié)構(gòu),另一方面要善于與物理中、生活中的模型進行類比和聯(lián)想。(2)向量是既有大小又有方向的量,與|模相同,但方向不一定相同,故(1)是假命題;若與平行,則與方向有兩種情況:一是同向二是反向,反向時=|,故(2)、(3)也是假命題。綜上所述,答案選D。點評:向量的概念較多,且容易混淆,故在學(xué)習(xí)中要分清,理解各概念的實質(zhì),注意區(qū)分共線向量、平行向量、同向向量等概念。題型2:平面向量的運算法則例2(1)如圖所示,已知正六邊形ABCDEF,O是它的中心,若=,=,試用,將向量, 表示出來。(2)(06上海理,13)如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是(
10、 )A B C D(3)(06廣東,4)如圖1所示,D是ABC的邊AB上的中點,則向量( )A BC D(1)解析:根據(jù)向量加法的平行四邊形法則和減法的三角形法則,用向量,來表示其他向量,只要考慮它們是哪些平行四邊形或三角形的邊即可。因為六邊形ABCDEF是正六邊形,所以它的中心O及頂點A,B,C四點構(gòu)成平行四邊形ABCO,所以,=,= =+,由于A,B,O,F(xiàn)四點也構(gòu)成平行四邊形ABOF,所以=+=+=2+,同樣在平行四邊形 BCDO中,()2,。點評:其實在以A,B,C,D,E,F(xiàn)及O七點中,任兩點為起點和終點,均可用 ,表示,且可用規(guī)定其中任兩個向量為,另外任取兩點為起點和終點,也可用,
11、表示。(2)C(3),故選A。例3設(shè)A、B、C、D、O是平面上的任意五點,試化簡:,。解析:原式= ;原式= ;原式= 。例4設(shè)為未知向量,、為已知向量,解方程2-(5+3-4)+ -3=0解析:原方程可化為:(2 - 3) + (-5+) + (4-3) = 0, =+ 。點評:平面向量的數(shù)乘運算類似于代數(shù)中實數(shù)與未知數(shù)的運算法則,求解時兼顧到向量的性質(zhì)。題型3:平面向量的坐標(biāo)及運算例5已知中,A(2,1),B(3,2),C(3,1),BC邊上的高為AD,求。解析:設(shè)D(x,y),則得所以。例6已知點,試用向量方法求直線和(為坐標(biāo)原點)交點的坐標(biāo)。解析:設(shè),則因為是與的交點,所以在直線上,也
12、在直線上。即得,由點得,。得方程組,解之得。故直線與的交點的坐標(biāo)為。題型4:平面向量的性質(zhì)例7平面內(nèi)給定三個向量,回答下列問題:(1)求滿足的實數(shù)m,n;(2)若,求實數(shù)k;(3)若滿足,且,求。解析:(1)由題意得,所以,得。(2),;(3)由題意得,得或。例8已知(1)求;(2)當(dāng)為何實數(shù)時,與平行, 平行時它們是同向還是反向?解析:(1)因為所以則(2),因為與平行,所以即得。此時,則,即此時向量與方向相反。點評:上面兩個例子重點解析了平面向量的性質(zhì)在坐標(biāo)運算中的體現(xiàn),重點掌握平面向量的共線的判定以及平面向量模的計算方法。題型5:共線向量定理及平面向量基本定理例9(2002天津文12,理
13、10)平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩點A(3,1),B(1,3),若點C滿足,其中、R,且+=1,則點C的軌跡方程為( )A3x+2y11=0 B(x1)2+(y2)2=5C2xy=0 Dx+2y5=0解法一:設(shè),則。由得,于是,先消去,由得。再消去得,所以選取D。解法二:由平面向量共線定理,當(dāng),時,A、B、C共線。因此,點C的軌跡為直線AB,由兩點式直線方程得即選D。點評:熟練運用向量的加法、減法、實數(shù)與向量的積的坐標(biāo)運算法則進行運算;兩個向量平行的坐標(biāo)表示;運用向量的坐標(biāo)表示,使向量的運算完全代數(shù)化,將數(shù)與形有機的結(jié)合。例10(1)(06福建理,11)已知=1,=,=0,點C在AO
14、B內(nèi),且AOC=30°,設(shè)=m+n(m、nR),則等于( )A B3 C DABOM圖(2)(06湖南文,10)如圖:OMAB,點P由射線OM、線段OB及AB的延長線圍成的陰影區(qū)域內(nèi)(不含邊界).且,則實數(shù)對(x,y)可以是( )AB. C. D. 解析:(1)B;(2)C。題型6:平面向量綜合問題例11已知向量與的對應(yīng)關(guān)系用表示。(1)證明:對于任意向量及常數(shù)m,n恒有成立;(2)設(shè),求向量及的坐標(biāo);(3)求使,(p,q為常數(shù))的向量的坐標(biāo)解析:(1)設(shè),則,故,(2)由已知得=(1,1),=(0,1)(3)設(shè)=(x,y),則,y=p,x=2pq,即=(2Pq,p)。例12求證:起
15、點相同的三個非零向量,32的終點在同一條直線上。證明:設(shè)起點為O,=,32,則=2(),=, 共線且有公共點A,因此,A,B,C三點共線,即向量,32的終點在同一直線上點評:(1)利用向量平行證明三點共線,需分兩步完成: 證明向量平行; 說明兩個向量有公共點;用向量平行證明兩線段平行也需分兩步完成:證明向量平行;說明兩向量無公共點。五思維總結(jié)數(shù)學(xué)教材是學(xué)習(xí)數(shù)學(xué)基礎(chǔ)知識、形成基本技能的“藍本”,能力是在知識傳授和學(xué)習(xí)過程中得到培養(yǎng)和發(fā)展的。新課程試卷中平面向量的有些問題與課本的例習(xí)題相同或相似,雖然只是個別小題,但它對學(xué)習(xí)具有指導(dǎo)意義,教學(xué)中重視教材的使用應(yīng)有不可估量的作用。因此,學(xué)習(xí)階段要在掌握教材的基礎(chǔ)上把各個局部知識按照一定的觀點和方法組織成整體,形成知識體系。學(xué)習(xí)本章主要樹立數(shù)形轉(zhuǎn)化和結(jié)合的觀點,以數(shù)代形,以形觀數(shù),用代數(shù)的運算處理幾何問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國消防救援學(xué)院《城市土地管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州體育職業(yè)學(xué)院《電動汽車原理與設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春人文學(xué)院《西方政治思想史汪聶才》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《C程序設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品衛(wèi)生檢測技術(shù)的發(fā)展
- 策劃感恩節(jié)新媒體活動模板
- 清明文化在媒體傳播中的挖掘模板
- 元旦跨年夜祝福語
- 統(tǒng)編版五年級語文上冊寒假作業(yè)(一)(有答案)
- 徐州幼兒師范高等專科學(xué)?!秳?chuàng)業(yè)基礎(chǔ)實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年浙江杭州師范大學(xué)附屬醫(yī)院招聘筆試真題
- 學(xué)校自習(xí)室管理及收費方案
- 2025年護理部護士理論培訓(xùn)計劃
- 環(huán)保管家管家式管家式一站式服務(wù)合同
- 醫(yī)療廢物污水培訓(xùn)
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 《用銳角三角函數(shù)解決問題(3)》參考課件
- 房地產(chǎn)營銷策劃 -佛山龍灣壹號學(xué)區(qū)房項目推廣策略提案方案
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風(fēng)水學(xué)的基礎(chǔ)知識培訓(xùn)
-
評論
0/150
提交評論