小學數(shù)學奧數(shù)題100題(附答案)_第1頁
小學數(shù)學奧數(shù)題100題(附答案)_第2頁
小學數(shù)學奧數(shù)題100題(附答案)_第3頁
小學數(shù)學奧數(shù)題100題(附答案)_第4頁
小學數(shù)學奧數(shù)題100題(附答案)_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、小學數(shù)學奧數(shù)題 100題(附答案)X 213 + 27+765X 327 + 27解:原式=765 + 27 X (213+327)= 765 + 27 X 540=765 X20=153002.(9999 + 9997 + 9001)-(1 +3 + + 999)解:原式=(9999-999 )+(9997-997 ) +( 9995-995 ) + +(9001-1)=9000+9000+ .+9000(500 個 9000)=45000003. X 1998X解:(+1) X 1998 X=x 1998 X +=1998=100004. (873 X 477-198) + (476 X

2、874 + 199)解:873 X 477-198=476 X 874+ 199因此原式=15.2000 X 1999-1999 X 1998+ 1998 X 1997-1997 X 1996+ - + 2 x 1解:原式=1999 X ( 2000 1998) + 1997 X ( 1998 1996)+ 3X (42) +2X1=(1999+ 1997+ - + 3+ 1) X 2= 2000000。6 . 297+ 293+ 289+ - + 209解:(209+297) *23/2=58197 .計算:解:原式=(3/2) * (4/3) * (5/4) *(100/99)*(1/2)

3、*(2/3)*(3/4)*(98/99)=50*(1/99)=50/99 8.解:原式=(1*2*3 ) /(2*3*4)=1/49 .有7個數(shù),它們的平均數(shù)是18。去掉一個數(shù)后,剩下 6個數(shù)的平均數(shù)是19;再去掉一個數(shù)后,剩下的 5個數(shù)的平均數(shù) 是20。求去掉的兩個數(shù)的乘積。解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的兩個數(shù)是 12和14它們的乘積是 12*14=16810 .有七個排成一列的數(shù),它們的平均數(shù)是30,前三個數(shù)的平均數(shù)是28,后五個數(shù)的平均數(shù)是33o求第三個數(shù)。解:28X 3+ 33X5-30X 7=39。11 .有兩組數(shù),第一組

4、9個數(shù)的和是63,第二組的平均數(shù)是11,兩個組中所有數(shù)的平均數(shù)是8。問:第二組有多少個數(shù)解:設第二組有 x個數(shù),則63+11x=8X (9+x),解得x=3, 12.小明參加了六次測驗,第三、第四次的平均分比前兩次 的平均分多2分,比后兩次的平均分少2分。如果后三次平均分比前三次平均分多 3分,那么第四次比第三次多得幾分解:第三、四次的成績和比前兩次的成績和多4分,比后兩次的成績和少 4分,推知后兩次的成績和比前兩次的成績和多8分。因為后三次的成績和比前三次的成績和多9分,所以第四次比第三次多 9-8=1 (分)。13 .媽媽每4天要去一次副食商店, 每5天要去一次百貨商店。媽媽平均每星期去這

5、兩個商店幾次(用小數(shù)表示)解:每20天去9次,9 + 20X7=(次)。14 .乙、丙兩數(shù)的平均數(shù)與甲數(shù)之比是13 : 7,求甲、乙、丙三數(shù)的平均數(shù)與甲數(shù)之比。解:以甲數(shù)為 7份,則乙、丙兩數(shù)共 13X2=26 (份)所以甲乙丙的平均數(shù)是(26+7) /3=11 (份)因此甲乙丙三數(shù)的平均數(shù)與甲數(shù)之比是11: 7。15 .五年級同學參加校辦工廠糊紙盒勞動,平均每人糊了76個。已知每人至少糊了70個,弁且其中有一個同學糊了88個,如果不把這個同學計算在內,那么平均每人糊74個。糊得最快的同學最多糊了多少個解:當把糊了 88個紙盒的同學計算在內時,因為他比其余同 學的平均數(shù)多 88-74= 14

6、(個),而使大家的平均數(shù)增加了 76-74=2 (個),說明總人數(shù)是14 + 2=7 (人)。因此糊得最快的同學最多糊了74 X 6-70 X 5= 94 (個)。16 .甲、乙兩班進行越野行軍比賽,甲班以千米/時的速度走 了路程的一半,又以千米/時的速度走完了另一半;乙班在比賽過程中,一半時間以千米/時的速度行進,另一半時間 以千米/時的速度行進。問:甲、乙兩班誰將獲勝解:快速行走的路程越長,所用時間越短。甲班快、慢速行 走的路程相同,乙班快速行走的路程比慢速行走的路程長, 所以乙班獲勝。17 .輪船從A城到B城需行3天,而從B城到A城需行4天。 從A城放一個無動力的木筏,它漂到B城需多少天

7、解:輪船順流用 3天,逆流用4天,說明輪船在靜水中行43=1 (天),等于水流 3 + 4=7 (天),即船速是流速的 7 倍。所以輪船順流行 3天的路程等于水流 3 + 3X7=24 (天) 的路程,即木筏從 A城漂到B城需24天。18 .小紅和小強同時從家里出發(fā)相向而行。小紅每分走52米,小強每分走70米,二人在途中的 A處相遇。若小紅提前4分 出發(fā),且速度不變,小強每分走90米,則兩人仍在 A處相遇。 小紅和小強兩人的家相距多少米解:因為小紅的速度不變,相遇地點不變,所以小紅兩次從 出發(fā)到相遇的時間相同。也就是說,小強第二次比第一次少 走4分。由(70X4) + ( 90 70) = 1

8、4 (分)可知,小強第二次走了14分,推知第一次走了 18分,兩人的家相距|(52+70) X 18=2196 (米)19 .小明和小軍分別從甲、乙兩地同時出發(fā),相向而行。若兩 人按原定速度前進,則4時相遇;若兩人各自都比原定速度多1千米/時,則 3時相遇。甲、乙兩地相距多少千米 解:每時多走1千米,兩人3時共多走6千米,這6千米相 當于兩人按原定速度 1時走的距離。所以甲、乙兩地相距6X4=24 (千米)20 .甲、乙兩人沿 400米環(huán)形跑道練習跑步,兩人同時從跑道 的同一地點向相反方向跑去。相遇后甲比原來速度增加2米/秒,乙比原來速度減少 2米/秒,結果都用 24秒同時回到 原地。求甲原來

9、的速度。解:因為相遇前后甲、乙兩人的速度和不變,相遇后兩人合跑一圈用24秒,所以相遇前兩人合跑一圈也用24秒,即24秒時兩人相遇。設甲原來每秒跑 x米,則相遇后每秒跑(x+2)米。因為甲 在相遇前后各跑了 24秒,共跑400米,所以有24x + 24 (x + 2) = 400,解得 x=7 又 1/3 米。21 .甲、乙兩車分別沿公路從A, B兩站同時相向而行,已知甲車的速度是乙車的倍,甲、乙兩車到達途中C站的時刻分別為5: 00和16: 00,兩車相遇是什么時刻解:9: 24 o解:甲車到達 C站時,乙車還需 16-5 = 11 (時) 才能到達C站。乙車行11時的路程,兩車相遇需11+

10、(1+) =(時)=4時24分,所以相遇時刻是 9 : 24。22 .一列快車和一列慢車相向而行,快車的車長是280米,慢車的車長是385米。坐在快車上的人看見慢車駛過的時間是11秒,那么坐在慢車上的人看見快車駛過的時間是多少秒 解:快車上的人看見慢車的速度與慢車上的人看見快車的速 度相同,所以兩車的車長比等于兩車經(jīng)過對方的時間比,故 所求時間為1123 .甲、乙二人練習跑步,若甲讓乙先跑10米,則甲跑 5秒可追上乙;若乙比甲先跑2秒,則甲跑4秒能追上乙。問:兩人每秒各跑多少米解:甲乙速度差為 10/5=2速度比為(4+2) : 4=6: 4所以甲每秒跑 6米,乙每秒跑 4米。24 .甲、乙、

11、丙三人同時從 A向B跑,當甲跑到 B時,乙離 B還有20米,丙離 B還有40米;當乙跑到 B時,丙離 B還 有24米。問:(1) A, B相距多少米(2)如果丙從 A跑到B用24秒,那么甲的速度是多少 解:解:(1)乙跑最后20米時,內跑了 40-24= 16 (米), 丙的速度25 .在一條馬路上,小明騎車與小光同向而行,小明騎車速度 是小光速度的3倍,每隔10分有一輛公共汽車超過小光,每 隔20分有一輛公共汽車超過小明。已知公共汽車從始發(fā)站每 次間隔同樣的時間發(fā)一輛車,問:相鄰兩車間隔幾分 解:設車速為a,小光的速度為 b,則小明騎車的速度為 3b。 根據(jù)追及問題“追及時間x速度差=追及距

12、離”,可列方程 10 (a-b) = 20 (a3b),解得a=5b,即車速是小光速度的 5倍。小光走10分相當于 車行2分,由每隔10分有一輛車超過小光知,每隔 8分發(fā)一 輛車。26 .一只野兔逃出 80步后獵狗才追它,野兔跑 8步的路程獵 狗只需跑3步,獵狗跑4步的時間兔子能跑 9步。獵狗至少 要跑多少步才能追上野兔解:狗跑12步的路程等于兔跑 32步的路程,狗跑12步的時 間等于兔跑27步的時間。所以兔每跑27步,狗追上5步(兔 步),狗要追上 80步(兔步)需跑27 X ( 80 + 5) + 80+ 8 X 3= 192 (步)。27 .甲、乙兩人在鐵路旁邊以同樣的速度沿鐵路方向相向

13、而行,恰好有一列火車開來,整個火車經(jīng)過甲身邊用了18秒,2分后又用15秒從乙身邊開過。問:(1)火車速度是甲的速度的幾倍(2)火車經(jīng)過乙身邊后,甲、乙二人還需要多少時間才能相遇解:(1)設火車速度為 a米/秒,行人速度為b米/秒,則由火車的是行人速度的11倍;(2)從車尾經(jīng)過甲到車尾經(jīng)過乙,火車走了135秒,此段路程一人走需1350X 11=1485 (秒),因為甲已經(jīng)走了 135秒, 所以剩下的路程兩人走還需(1485- 135) + 2=675 (秒)。28 .輛車從甲地開往乙地,如果把車速提高20%,那么可以比原定時間提前1時到達;如果以原速行駛 100千米后再將車 速提高30%,那么也

14、比原定時間提前 1時到達。求甲、乙兩 地的距離。29 .完成一件工作,需要甲干5天、乙干 6天,或者甲干7天、乙干2天。問:甲、乙單獨干這件工作各需多少天解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30 . 一水池裝有一個放水管和一個排水管,單開放水管5時可將空池灌滿,單開排水管7時可將滿池水排完。如果放水管開了 2時后再打開排水管,那么再過多長時間池內將積有 半池水31 .小松讀一本書,已讀與未讀的頁數(shù)之比是3 : 4,后來又讀了 33頁,已讀與未讀的頁數(shù)之比變?yōu)? : 3。這本書共有多少頁解:開始讀了 3/7后來總共讀了 5/833/(5/8-3/7)=3

15、3/(11/56)=56*3=168 頁32 . 一件工作甲做 6時、乙做12時可完成,甲做 8時、乙做 6時也可以完成。如果甲做3時后由乙接著做, 那么還需多少 時間才能完成解:甲做2小時的等于乙做 6小時的,所以乙單獨做需要 6*3+12=30 (小時)甲單獨做需要 10小時因此乙還需要(1-3/10)/(1/30)=21天才可以完成。33 .有一批待加工的零件, 甲單獨做需4天,乙單獨做需5天, 如果兩人合作,那么完成任務時甲比乙多做了20個零件。這批零件共有多少個解:甲和乙的工作時間比為 4: 5,所以工作效率比是 5: 4 工作量的比也 5: 4,把甲做的看作 5份,乙做的看作 4份

16、 那么甲比乙多1份,就是20個。因此9份就是180個所以這批零件共 180個34 .挖一條水渠,甲、乙兩隊合挖要 6天完成。甲隊先挖3天, 乙隊接著解:根據(jù)條件,甲挖 6天乙挖2天可挖這條水渠的 3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙單獨挖需要 10天。甲單獨挖需要 1/ (1/6-1/10 ) =15天。35 .修一段公路,甲隊獨做要用 40天,乙隊獨做要用 24天。 現(xiàn)在兩隊同時從兩端開工,結果在距中點750米處相遇。這段公路長多少米36 .有一批工人完成某項工程,如果能增加8個人,則10天就能完成;如果能增加3個人,就要20天才能完成?,F(xiàn)在只能增加2個人,那么完成這項工

17、程需要多少天解:將1人1天完成的工作量稱為 1份。調來3人與調來8 人相比,10天少完成(8-3) X 10=50 (份)。這50份還需調 來3人干10天,所以原來有工人 50+103=2 (人),全部工程有(2+8) X 10=100 (份)。調來 2人需100+ (2+2) 二25 (天)。37 .解:三角形 AOB和三角形DOC的面積和為長方形的50%所以三角形AOB占32%16+32%=5038 .解:1/2*1/3=1/6所以三角形 ABC的面積是三角形 AED面積的6倍。39 .下面9個圖中,大正方形的面積分別相等,小正方形的面積分別相等。問:哪幾個圖中的陰影部分與圖(1)陰影部分

18、面積相等解:(2)(4)(7) (8)(9)40 .觀察下列各串數(shù)的規(guī)律,在括號中填入適當?shù)臄?shù)2, 5, 11, 23, 47,(),解:括號內填95規(guī)律:數(shù)列里地每一項都等于它前面一項的2倍減141.在下面的數(shù)表中,上、下兩行都是等差數(shù)列。上、下對應的兩個數(shù)字中,大數(shù)減小數(shù)的差最小是幾解:1000-1=999997-995=992每次減少 7, 999/7=1425所以下面減上面最小是51333-1=/7=190 2所以上面減下面最小是2因此這個差最小是 2。42 .如果四位數(shù)6口口8能被73整除,那么商是多少解:估計這個商的十位應該是8,看個位可以知道是 6因此這個商是 86 o43 .求

19、各位數(shù)字都是7,弁能被63整除的最小自然數(shù)。解:63=7*9所以至少要9個7才行(因為各位數(shù)字之和必須是9的倍數(shù))44 . 1 X 2X 3X-X 15 能否被 9009 整除解:能。將9009分解質因數(shù)9009=3*3*7*11*1345 .能否用1, 2, 3, 4, 5, 6六個數(shù)碼組成一個沒有重復數(shù)字,且能被 11整除的六位數(shù)為什么解:不能。因為 1 + 2+3+4+5+6=21,如果能組成被 11整除的六位數(shù),那么奇數(shù)位的數(shù)字和與偶數(shù)位的數(shù)字和一個為16, 一個為5,而最小的三個數(shù)字之和1+2+3=6>5,所以不可能組成。46 .有一個自然數(shù),它的最小的兩個約數(shù)之和是4,最大的

20、兩個約數(shù)之和是100,求這個自然數(shù)。解:最小的兩個約數(shù)是1和3,最大的兩個約數(shù)一個是這個自然數(shù)本身,另一個是這個自然數(shù)除以3的商。最大的約數(shù)與第二大以內約數(shù)個數(shù)最多的自然數(shù)有五個,它們分別是幾解:如果恰有一個質因數(shù),那么約數(shù)最多的是26=64,有7個約數(shù);如果恰有兩個不同質因數(shù),那么約數(shù)最多的是 23X32= 72和25X 3 = 96,各有12個約數(shù);如果恰有三個不同質因數(shù),那么約數(shù)最多的是 22X 3X5=60,22X 3X7=84 和 2X 32X5=90,各有 12 個約數(shù)。所以100以內約數(shù)最多的自然數(shù)是60, 72, 84, 90和96。48 .寫出三個小于 20的自然數(shù),使它們的

21、最大公約數(shù)是1,但兩兩均不互質。解:6, 10, 1549 .有336個蘋果、252個桔子、210個梨,用這些果品最多可分成多少份同樣的禮物在每份禮物中,三樣水果各多少 解:42份;每份有蘋果 8個,桔子6個,梨5個。50 .三個連續(xù)自然數(shù)的最小公倍數(shù)是168 ,求這三個數(shù)。解:6, 7, 8。提示:相鄰兩個自然數(shù)必互質,其最小公倍數(shù) 就等于這兩個數(shù)的乘積。而相鄰三個自然數(shù),若其中只有一 個偶數(shù),則其最小公倍數(shù)等于這三個數(shù)的乘積;若其中有兩 個偶數(shù),則其最小公倍數(shù)等于這三個數(shù)乘積的一半。51 .一副撲克牌共 54張,最上面的一張是紅桃Ko如果每次把最上面的12張牌移到最下面而不改變它們的順序及

22、朝向,那么,至少經(jīng)過多少次移動,紅桃K才會又出現(xiàn)在最上面解:因為54, 12=108,所以每移動108張牌,又回到原來的 狀況。又因為每次移動12張牌,所以至少移動108 + 12=9(次)。52 .爺爺對小明說:“我現(xiàn)在的年齡是你的7倍,過幾年是你的6倍,再過若干年就分別是你的5倍、4倍、3倍、2倍?!蹦阒罓敔敽托∶鳜F(xiàn)在的年齡嗎解:爺爺70歲,小明10歲。提示:爺爺和小明的年齡差是6, 5, 4, 3, 2的公倍數(shù),又考慮到年齡的實際情況,取公倍數(shù)中最小的。(60歲)53 .某質數(shù)加6或減6得到的數(shù)仍是質數(shù),在 50以內你能找 出幾個這樣的質數(shù)弁將它們寫出來。解:11, 13, 17, 2

23、3, 37, 47。54 .在放暑假的8月份,小明有五天是在姥姥家過的。這五天 的日期除一天是合數(shù)外,其它四天的日期都是質數(shù)。這四個 質數(shù)分別是這個合數(shù)減去1,這個合數(shù)加上1,這個合數(shù)乘上2減去1,這個合數(shù)乘上 2加上1。問:小明是哪幾天在姥姥 家住的解:設這個合數(shù)為 a,則四個質數(shù)分別為(a1) , (a+1), (2a 1) , ( 2a+1)。因為(a-1)與(a+1)是相差 2的質數(shù),在 131中有五組:3, 5; 5, 7; 11, 13; 17, 19; 21, 31 o經(jīng)試算,只有當 a=6時,滿足題意,所以這五天是 8 月 5, 6, 7, 11, 13 日。55 .有兩個整數(shù)

24、,它們的和恰好是兩個數(shù)字相同的兩位數(shù),它 們的乘積恰好是三個數(shù)字相同的三位數(shù)。求這兩個整數(shù)。解:3, 74; 18, 37。提示:三個數(shù)字相同的三位數(shù)必有因數(shù)1110因為111 = 3X37,所以這兩個整數(shù)中有一個是 37的倍數(shù)(只能是37或74), 另一個是3的倍數(shù)。56 .在一根100厘米長的木棍上,從左至右每隔6厘米染一個紅點,同時從右至左每隔5厘米也染一個紅點,然后沿紅點處將木棍逐段鋸開。問:長度是1厘米的短木棍有多少根解:因為100能被5整除,所以可以看做都是自左向右染色。因為6與5的最小公倍數(shù)是 30,即在30厘米處同時染上紅點,所以染色以30厘米為周期循環(huán)出現(xiàn)。一個周期的情況如下

25、圖所示:由上圖知道,一個周期內有2根1厘米的木棍。所以三個周期即90厘米有6根,最后10厘米有1根,共7根。57 .某種商品按定價賣出可得利潤960元,若按定價的80%出售,則虧損832元。問:商品的購入價是多少元解:8000元。按兩種價格出售的差額為960+ 832=1792 (元),這個差額是按定價出售收入的20% ,故按定價出售的收入為1792 20 % =8960 (元),其中含利潤960元,所以購入價為8000 元。58 .甲桶的水比乙桶多 20%,丙桶的水比甲桶少20%。乙、丙兩桶哪桶水多解:乙桶多。59 .學校數(shù)學競賽出了 A, B, C三道題,至少做對一道的有25人,其中做對

26、A題的有10人,做對B題的有13人,做對C題的有15人。如果二道題都做對的只有1人,那么只做對兩道題和只做對一道題的各有多少人解:只做對兩道題的人數(shù)為(10+13+15)-25 -2X1=11(人),只做對一道題的人數(shù)為25 11 1=13 (人)。60 .學校舉行棋類比賽,設象棋、圍棋和軍棋三項,每人最多參加兩項。根據(jù)報名的人數(shù),學校決定對象棋的前六名、圍棋的前四名和軍棋的前三名發(fā)放獎品。問:最多有幾人獲獎最少有幾人獲獎解:共有13人次獲獎,故最多有 13人獲獎。又每人最多參加兩項,即最多獲兩項獎,因此最少有7人獲獎。61 .在前1000個自然數(shù)中,既不是平方數(shù)也不是立方數(shù)的自然數(shù)有多少個解

27、:因為 312V 1000V 322, 103= 1000,所以在前 1000個自然數(shù)中有31個平方數(shù),10個立方數(shù),同時還有3個六次方數(shù)(16, 26, 36)。所求自然數(shù)共有1000- ( 31 + 10) + 3= 962 (個)。62 .用數(shù)字0, 1, 2, 3, 4可以組成多少個不同的三位數(shù)(數(shù) 字允許重復)解:4*5*5=100 個63 .要從五年級六個班中評選出學習、體育、衛(wèi)生先進集體各一個,有多少種不同的評選結果解:6*6*6=216 種64 .已知15120=24 X 33X5X 7,問:15120共有多少個不同的 約數(shù)解:15120的約數(shù)都可以表示成2ax 3b x 5c

28、x 7d的形式,其中 a=0, 1, 2, 3, 4, b=0, 1, 2, 3, c=0, 1, d=0, 1,即 a, b, c, d的可能取值分別有 5, 4, 2, 2種,所以共有約 數(shù) 5X4X2X2=80 (個)。65 .大林和小林共有小人書不超過50本,他們各自有小人書的數(shù)目有多少種可能的情況解:他們一共可能有 050本書,如果他們共有 n本書,則 大林可能有書 0n本,也就是說這n本書在兩人之間的分配 情況共有(n+1)種。所以不超過50本書的所有可能的分配情況共有 1 + 2+3- + 51=1326 (種)。66 .在右圖中,從 A點沿線段走最短路線到B點,每次走一步或兩步

29、,共有多少種不同走法(注:路線相同步驟不同,認 為是不同走法。)解:80種。提示:從 A到B共有10條不同的路線,每條路 線長5個線段。每次走一個或兩個線段,每條路線有8種走法,所以不同走法共有8X10=80 (種)o67 .有五本不同的書,分別借給3名同學,每人借一本,有多少種不同的借法 解:5*4*3=60 種68 .有三本不同的書被 5名同學借走,每人最多借一本,有多少種不同的借法解:5*4*3=60 種69 .恰有兩位數(shù)字相同的三位數(shù)共有多少個解:在900個三位數(shù)中,三位數(shù)各不相同的有9X9X8=648(個),三位數(shù)全相同的有9個,恰有兩位數(shù)相同的有900-648-9=243 (個)。

30、70 .從1,3,5中任取兩個數(shù)字,從 2, 4, 6中任取兩個數(shù)字,共可組成多少個沒有重復數(shù)字的四位數(shù)解:三個奇數(shù)取兩個有3種方法,三個偶數(shù)取兩個也有3種方法。共有 3X3X4! =216 (個)。71 .左下圖中有多少個銳角解:C(11,2)=55 個72 . 10個人圍成一圈,從中選出兩個不相鄰的人,共有多少種不同選法解:c(10,2)-10=35 種73 .一牧場上的青草每天都勻速生長。這片青草可供27頭牛吃6周,或供23頭牛吃9周。那么可供21頭牛吃幾周解:將1頭牛1周吃的草看做1份,則27頭牛6周吃162份, 23頭牛9周吃207份,這說明3周時間牧場長草 207-162 =45

31、(份),即每周長草15份,牧場原有草 16215X6=72(份)。21頭牛中的15頭牛吃新長出的草,剩下的 6頭牛 吃原有的草,吃完需72 + 6=12 (周)。74 .有一水池,池底有泉水不斷涌出。要想把水池的水抽干,10臺抽水機需抽8時,8臺抽水機需抽12時。如果用6臺抽水機,那么需抽多少小時解:將1臺抽水機1時抽的水當做1份。泉水每時涌出量為(8X12-10X8) + ( 12-8) =4 (份)。水池原有水(10-4) X 8= 48(份),6臺抽水機需抽 48+ (6-4) =24 (時)。75 .規(guī)定 a*b=(b + a)x b,求(2*3)*5 。解:2*3=(3+2)*3=1

32、515*5=(15+5)*5=100! +2! +3! + - +99!的個位數(shù)字是多少解:1! +2! +3! +4! =1+2+6+24=33從5!開始,以后每一項的個位數(shù)字都是0所以1 ! +2! +3! +- +99!的個位數(shù)字是 3。77 (1).有一批四種顏色的小旗,任意取出三面排成一行,表示各種信號。在 200個信號中至少有多少個信號完全相同解:4*4*4=64200+64=3 8所以至少有4個信號完全相同。77. (2)在今年入學的一年級新生中有370多人是在同一年出生的。試說明:他們中至少有2個人是在同一天出生的。解:因為一年最多有366天,看做366個抽屜因為370>

33、366,所以根據(jù)抽屜原理至少有2個人是在同一天出生的。78 .從前11個自然數(shù)中任意取出6個,求證:其中必有 2個數(shù)互質。證明:把前11個自然數(shù)分成如下 5組(1, 2, 3) (4, 5) (6, 7) (8, 9) (10, 11)6個數(shù)放入5組必然有2個數(shù)在同一組,那么這兩個數(shù)必然 互質。79 .小明去爬山,上山時每時行千米,下山時每時行 4千米, 往返共用時。小明往返一趟共行了多少千米80 .長江沿岸有 A, B兩碼頭,已知客船從 A到B每天航行500 千米,從B到A每天航行400千米。如果客船在 A, B兩碼 頭間往返航行 5次共用18天,那么兩碼頭間的距離是多少干 米解:800千米

34、。 提示:從A到B與從B到A的速度比是 5:4,從A到B用81 .請在下式中插入一個數(shù)碼,使之成為等式:1X 11 X 111= 111111解答:91*11*111=11111182.甲、乙、丙三數(shù)的和是 100,甲數(shù)除以乙數(shù)與丙數(shù)除以甲數(shù)的結果都是商 5余1。問:乙數(shù)是多少解:設乙數(shù)是 x,那么甲數(shù)就是 5x+1丙數(shù)是 5(5x+1)+1=25x+6因此 x+5x+1+25x+6=100 31x=93 x=3所以乙數(shù)是383. X(1 +2+3+4+5+6+5+4+3+2+ 1)是哪個數(shù)的平方 解:=111111的平方1+2+3+4+5+6+5+4+3+2+1=36=6 的平方所以原式=6

35、66666的平方。84 .某劇院有25排座位,后一排比前一排多2個座位,最后一排有70個座位。問:這個劇院一共有多少個座位解:第一排有 70-24*2=22個座位所以總座位數(shù)是(22+70)*25/2 =115085 .某城市舉行小學生數(shù)學競賽,試卷共有20道題。評分標準是:答對一道給3分,沒答的題每題給 1分,答錯一道扣1 分。問:所有參賽學生的得分總和是奇數(shù)還是偶數(shù)為什么解:一定是偶數(shù),因為每個人20道題得分都分別是奇數(shù),20個奇數(shù)的和一定是偶數(shù)。每個人的得分都是偶數(shù),所以無論有多少參賽學生,參賽學生的得分總和一定是偶數(shù)。86 .可以分解為三個質數(shù)之積的最小的三位數(shù)是幾解:102=2*3*1787 .兩個質數(shù)的和是 39,求這兩個質數(shù)的積。解:注意到奇偶性可以知道這2個質數(shù)分別是 2和37它們的乘積是 2*37=7488 .有1, 2, 3, 4, 5, 6, 7, 8, 9九張牌,甲、乙、丙各拿 了三張。甲說:“我的三張牌的積是48?!币艺f:“我的三張牌的和是15?!北f:“我的三張牌的積是63?!眴枺核麄兏髂昧四娜龔埮平猓?3=7*1*9 所以丙拿的1, 7, 948=2*3*8 所以甲拿的 2, 3, 84+5+6=15因此乙拿的是 4, 5, 689 .四個連續(xù)自然數(shù)的積是 3024 ,求這四個數(shù)。解:考慮末尾數(shù)字,1*2*3*

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論