泰州市高三數學復習建議(2016)_第1頁
泰州市高三數學復習建議(2016)_第2頁
泰州市高三數學復習建議(2016)_第3頁
泰州市高三數學復習建議(2016)_第4頁
泰州市高三數學復習建議(2016)_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、泰州市2014高考復習建議各類題型方向建議立體幾何1. 注意運算題解題規(guī)范的指導,如求幾何體的體積時,如果需要作高,則必須具有“一作二證三算”的完整步驟;如果圖中已有高,則要先證明垂直,再進行計算。2. 等積法、割補法要適當訓練。3適當注意旋轉體內的平行、垂直關系的證明。應用題1. 重視函數應用型問題,在給定的圖形中表示出某個量(建構函數模型),再研究其最值,或通過解不等式研究某個量的范圍。2. 注意一下概率、統計型應用題。如果命題組找不到合適的應用模型,可能用概率統計替代。這類問題不是學生不會,而是因為平時都以填空形式出現,對于解答題,學生不會規(guī)范表述解答過程。3. 線性規(guī)劃應用題適當練一下

2、。4. 可能性不大,但出了正確率可能很低的“真”應用題,如例 飛機能夠測量的數據:俯角、A與B之間的距離。設計測量方法,求出山頂M、N之間的距離。(1)指出需要測量的量(用字母表示);(2)用文字和公式寫出計算M、N之間距離的步驟。·M·NAB··導數1.注意切線類問題。2離散問題連續(xù)化,再用導數處理最值、大小比較或不等式問題的技巧(模考第19題)。3運用導數研究函數單調性,并由此證明不等式(兩種題型:題型1:通過導數研究最值,再確定大??;題型2:通過導數確定單調性,再由自變量的大小關系確定大?。┙馕鰩缀我皇翘匦匝芯浚ń鈳妆举|); 二是范圍問題; 三是角

3、的問題(沒有出現過。可以是特性,也可以是范圍);四是注意定義運用;五是證明滿足某種條件的點在某種曲線上(與求曲線方程本質一致)。五是運算問題。 要求學生不要怕繁,要通過合理安排答卷時間使本題有盡可能多的解答時間。要大膽放棄不可為的,確保有時間做可為的。不等式1.注意基本不等式出難題例 若實數x,y滿足+=1,則3-x+9y 的最小值為 。2解不等式綜合例 在與之間有且只有3個整數,則實數x的取值范圍是 。函數1圖象變換例 若f(x+1),f(x-1)都是奇函數,試判斷f(x+3)的奇偶性。2.注意未考方向:運用導數研究不等式;復雜函數圖象對稱性(證明對稱性(如三次函數圖象的對稱性)、求三次函數

4、圖象的對稱中心、對稱性的運用等)。3 .兩個函數:y=ex與y=lnx及與多項式函數的運算(圖像特征)。4.分段函數構成的綜合題如:去年的模擬卷(考前)上的題:已知,兩函數,。(1)求證,三數成等差數列;(2) 如果對一切實數,恒成立,設函數圖象的極大值點和極小值點分別為和,求直線的斜率。記函數,如果滿足集合的最大實數的值是,求實數。向量可能難度大:從直線型向曲線型 如:已知圓O:x2+y2=4,圓M:(x-5cosq)2+(y-5sinq)2=1(qR),過圓M上任意一點P作圓O的兩條切線PE、PF,切點分別為E、F,則 的最小值為 附加題1.注意概率題的應用性例 某電器商經過多年的經驗發(fā)現

5、本店每個月售出的電冰箱的臺數x是一個隨機變量,它的分布列如下x12312P1/121/121/121/12設每售出一臺冰箱,電器商獲利300元,如銷售不出而囤積于倉庫,則每臺冰箱每月需花保養(yǎng)費用100元。問電器商月初進多少臺冰箱才能使自己月平均收益最大?規(guī)范書定的提醒1. 若有省略的式:多寫些項,讓閱卷教師看得出式子的結構及規(guī)律。2. 運用公式或定理時,式子要寫成相關公式或定理的結構形式。3. 定理要求的條件要完整。4. 應用題要“一設二解三答”5. 同一問題中同一字母不能表示不同的量。6. 不能隨便運用教材中不是定理或公式的結論,如“側棱長相等的棱錐的頂點在底面內的射影為底面多邊形的外心”數

6、學答題規(guī)范要求:(以下例子都是2013年高考題)(1)敘述的規(guī)范性:2013年16題(立體幾何); 敘述時的“省略號”省到什么程度?多寫些項,讓閱卷人看出式子的規(guī)律非常必要。 運用公式時怎樣讓閱卷人看出是用的什么公式(如柯西不等式、數學歸納法)?(2)推理的規(guī)范性:15題(復數與三角) 由cosa=cos(p-b)推得: a=p-b; 由sina=sinb=1/2推得a=5p/6,b=p/6. 第19題:由d2-2ad=0推得d=2a。(3)表示形式的規(guī)范性:11題(不等式f(x)>x的解集用區(qū)間表示為 。)(4)解答過程的規(guī)范性:18題(三角應用題) 第一小題:最后要么答,要么加:所以

7、索道AB的長為1040m; 第二小題:最后要表述:所以為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在1250/43,625/14(單位:m/min)范圍內。 必要的表述;以圖代理;證明題與求解題等。(5)依據的規(guī)范性:第19題: (d1-1/2d)n3+(b1-d1-a+1/2d)n2+cd1n=c(d1-b1)對所有的正整數n都成立。 補充結論的利弊; 兩條平行線中的一條垂直于一個平面,另一條也垂直于這個平面; 一個平面內兩條相交直線平行于另一個平面內的兩條相交直線,那么這兩個平面平行。(6)規(guī)范的技術(去年的19題、20題) 對于函數f(x),若存在區(qū)間a,b,當xa,

8、b時的值域為ka,kb(k>0),則稱y=f(x)為k倍值函數。若f(x)=lnx+x是k倍函數,則實數k的取值范圍是 。 如:lnx=(k-1)x有兩個正解。填空題可用圖象解,但如果是解答題就必須通過導數研究單調性,并通過估算找兩個函數值符號相反的自變量進行說明。答題策略的提醒基本原則:不貪心,將會做的做全了、做對了、不失分。160分部分:1. 先做填空題第1-10條(高手可多做2題);2. 接著做15、16、17題,注意規(guī)范、準確。如果其中有做不下去的也可先放一下。比如這次三模第17題,等后面能做的都做完了再回來,認真讀題(道理上講不應該難,最多最后一小題是中檔題),準確理解題意,耐

9、心演算。3. 第18題可以全面做,特別是第1小題(如果是3小題,則是第1、2小題)必須做,如果第2或3小題做不下去的話,就先將第19題、20題能做的做完,19、20題不要完全不看,它們的第1小題通常與填空題中的中檔題差不多。19、20題只要適當為之,它們的主干部分全省都沒有幾個人做得出來(通常是萬分之一左右)。4. 全卷能做出來的部分做完后,回到沒有做的填空題,適當花點時間。如果根本沒有思路,大膽放棄。5. 寧可多花點時間做解析幾何,堅持算下去,也不要在第13、14題上花過多時間,特別是根本沒有思路時。6. 填空題處理好(不是指做好,而是指會做的都做了)后,再將第15、16、17、18題遇到困

10、難的部分進行再思考,但時間不要多,千萬不能在同一問題上花多于10分鐘的時間。如果4-5分鐘時仍無思路,就放棄。7. 最后如果還有時間,再對已經做過的題進行復查,特別是有一定運算量的題再算一遍。40分部分1. 第21題先看一下不等式題,如果一下子就能看出思路(通常用基本不等式或柯西不等式),就直接做,如果是解不等式的問題或1分鐘看不出思路,就立即做矩陣題與極坐標與參數方程題。2. 如果做矩陣題與極坐標與參數方程題,必須運算準確,確保這20分得全。3. 第22題是區(qū)分題,要細心、認真做好。如遇到困難,可先做第23題會做的部分,到做不下去時立即回來繼續(xù)做。4. 第23題只要將一看就做得出來的做好即可

11、,可還有時間,可復查前面的題。只有有足夠把握時才可多花點時間嘗試一下。心理調控1考試過程中決不要考慮其它問題,任何雜念都是有害無益的(特別是不要事先設目標,因為考多少分(難度)不是你決定的,是由命題人決定的)。確??荚囘^程中眼中只有題目,腦中只有題目。2難了,不要心慌,因為大家都難,有時難題對我們不一定是壞事;容易了,不要忘乎所以,更要細心、認真。解題過程中的注意點與技巧1草稿紙要按順序寫,便于復查。2不要留空白,更不要在沒有正確解答過程前將已經寫的劃掉。對不會做的題,能想到多少寫多少,只要是正常的、有效的過程都有分。3(1)解題要規(guī)范,計算要準確,特別是多個小題且后面的問題與前面的結論有關時

12、,前面的結論一定不能錯。(2)應用題要有設有答,討論題最后要總結。(3)細節(jié)要注意:等比數列求和,公比為1的情形;an=Sn-Sn-1中n=1的情況;直線與圓錐曲線的位置關系中直線斜率不存在的情形;解一次、二次不等式中系數的符號及為0的情況;解立體幾何計算問題要有作有證有解,敘述要完整;計算方差時要注意除以數據的個數;數列中前n項的絕對值的和,要注意討論正負;定義域優(yōu)先原則;基本不等式求最值時注意條件;用導數法求切線,注意所過點是否切點;向量共線條件、平面向量基本定理成立的條件;用直線的截距式方程時注意直線過原點的情形;等等。4審題要慢,答題要快,但不能慌張,心態(tài)要平和,冷靜。5分解的技巧。 對疑難問題,實在啃不動時,一個明智的做法是:將它劃分為幾個子問題或一系列的步驟,先解決問題的一部分。 至少先解決一部分,增加得分點。6跳步解答的技巧。 若前一小題不會,可先承認這一結論,并可利用這一結論解決下面的小題。7從簡單情形開始。 如對:已知定義在0,1上的函數f(x),f(0)=f(1),且對任意x1,x2Î0,1,有|f(x1)-f(x2)|<|x1-x2|,求證:當x1,x2Î0,1時,|f(x1)-f(x2)|<。 先對|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論