


版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高中數(shù)學(xué)最新重要知識(shí)點(diǎn)匯總2em; text-align: center;"> 高中數(shù)學(xué)重要知識(shí)點(diǎn) 立體幾何初步 NO.1 柱、錐、臺(tái)、球的結(jié)構(gòu)特征 棱柱 定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。 表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。 幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。 棱錐 定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角
2、形,由這些面所圍成的幾何體。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等 表示:用各頂點(diǎn)字母,如五棱錐 幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。 棱臺(tái) 定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等 表示:用各頂點(diǎn)字母,如五棱臺(tái) 幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn) 圓柱 定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。 幾何特征:底面是全等的圓;母線與軸平行;軸與
3、底面圓的半徑垂直;側(cè)面展開(kāi)圖是一個(gè)矩形。 圓錐 定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。 幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)扇形。 圓臺(tái) 定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分 幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)弓形。 球體 定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑。 NO.2 空間幾何體的三視圖 定義三視圖 定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上
4、向下) 注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度; 俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度; 側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。 NO.3 空間幾何體的直觀圖斜二測(cè)畫(huà)法 斜二測(cè)畫(huà)法 斜二測(cè)畫(huà)法特點(diǎn) 原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變; 原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。 直線與方程 直線的傾斜角 定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°180° 直線的斜率 定義:傾斜
5、角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。 過(guò)兩點(diǎn)的直線的斜率公式: (注意下面四點(diǎn)) (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90° (2)k與P1、P2的順序無(wú)關(guān); (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得; (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。 冪函數(shù) 定義 形如y=xa(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。 定義域和值域 當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意
6、實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域 性質(zhì) 對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性: 首先我們知道如果a=p/q,q和p都是整數(shù),則x(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函
7、數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是0,+)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(xk),顯然x0,函數(shù)的定義域是(-,0)(0,+).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道: 排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x0,則a可以是任意實(shí)數(shù); 排除了為0這種可能,即對(duì)于x0和x0的所有實(shí)數(shù),q不能是偶數(shù); 排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。 指數(shù)函數(shù) 指數(shù)函數(shù) (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的
8、定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。 (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。 (3)函數(shù)圖形都是下凹的。 (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。 (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。 (6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。 (7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。 (8)顯然指數(shù)函數(shù)無(wú)界。 奇偶性 定義 一般地,對(duì)于函數(shù)f(x) (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。 (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。 (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河南省三門(mén)峽市化學(xué)高一下期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 內(nèi)蒙古自治區(qū)赤峰市2025年高二化學(xué)第二學(xué)期期末綜合測(cè)試模擬試題含解析
- 桐柏危房排查管理辦法
- 杭州電子印章管理辦法
- 材料命名規(guī)則管理辦法
- 村級(jí)廁所后期管理辦法
- 填料技術(shù)創(chuàng)新方向-洞察及研究
- 醫(yī)保應(yīng)急賬戶管理辦法
- 廢舊鋰離子電池回收處理綜合利用項(xiàng)目的環(huán)境保護(hù)評(píng)估報(bào)告
- 河源住房維修管理辦法
- 住家保姆合同協(xié)議書(shū)模板
- AI如何賦能藝術(shù)教育-筆記
- DB11T 485-2020 集中空調(diào)通風(fēng)系統(tǒng)衛(wèi)生管理規(guī)范
- 《人力資源管理》全套教學(xué)課件
- Unit 6 Craftsmanship Reading 教案-2023-2024學(xué)年中職英語(yǔ)高教版(2023修訂版)基礎(chǔ)模塊2
- 2024汽車租賃合同協(xié)議可打印
- 2023-2024學(xué)年山東省菏澤市東明縣八年級(jí)(下)期末數(shù)學(xué)試卷(含答案)
- 初高中物理銜接講座(初高中物理對(duì)比)
- 小學(xué)科學(xué)考查方案
- 2023-2024學(xué)年江蘇省蘇州市小升初語(yǔ)文真題重組卷(部編版)
- 工業(yè)互聯(lián)網(wǎng)平臺(tái)賦能 產(chǎn)業(yè)鏈供應(yīng)鏈白皮書(shū)
評(píng)論
0/150
提交評(píng)論